Reports current

Determination of Carbonyl Compounds in Cigarette Mainstream Smoke. The CORESTA 2010 Collaborative Study and Recommended Method

SPA - Full Report of 2010 Collaborative Study published in Beiträge zur Tabakforschung International/Contributions to Tobacco Research Volume 25 - No. 2

June 2012

Abstract

A recommended method has been developed and published by CORESTA, applicable to the quantification of selected carbonyl compounds (acetaldehyde, formaldehyde, acetone, acrolein, methyl ethyl ketone, crotonaldehyde, propionaldehyde and butyraldehyde) in cigarette mainstream smoke. The method involved smoke collection in impinger traps, derivatisation of carbonyls with 2,4-dinitrophenylhydrazine (DNPH), separation of carbonyl hydrazones by reversed phase high performance liquid chromatography and detection by ultra violet or diode array.

At the start of the process it was determined that most laboratories participating in the CORESTA Special Analytes Sub-Group (SASG) used a similar method involving such derivatisation and so this was chosen as the basis of the recommended method. Initial joint experiments, specific experiments by single laboratories and ongoing discussions addressed some methodological aspects that needed to be considered before moving to a recommended method.

As a first step, a joint experiment by 17 laboratories was carried out in 2009-2010 that investigated three features of the methodology on two reference cigarettes (3R4F and CM6) considered most important by SASG members. These were the volume of the impinger solution (25 or 35 mL); the type of mineral acid (perchloric or phosphoric) used to initiate the derivatisation and the time of derivatisation (5 or 30 min) before terminating the reaction with TrizmaTM base. Overall, it was concluded that these studied parameters in the methodology seemed to have little effect on the overall yield data, compared to the underlying variability among laboratories. The 25 mL impinger solutions appeared to give somewhat higher yields, although not with statistically significant differences, than those obtained when using 35 mL solutions.

Some laboratories volunteered to carry out other investigations, for example, to confirm the identity of both the Eand Z-isomeric acetaldehyde hydrazone peaks within the chromatogram of smoke carbonyls and to investigate methodology factors influencing the hydrazoneisomerisation.

The CORESTA Recommended Method (CRM) was produced through a final collaborative experiment involving 15 laboratories from 11 countries using 7 linear and 8 rotary smoking machines. Some notes are included in the CRM to inform other laboratories that might wish to adopt the method, concerning the main features that need to be well controlled to provide data as robust as possible and to provide similar repeatability and reproducibility data.

Statistical evaluations were made according to ISO 5725 recommendations and are included. As expected from previous work on other smoke components, the levels of reproducibility of carbonyl yields among laboratories are much greater than the levels found for “tar”, nicotine and carbon monoxide and given in the equivalent ISO standards. When expressing the reproducibility (R) value as a percentage of the mean yield among-laboratories and across all of the studied products, values ranged from 67-125% for formaldehyde; from 24-55% for acetaldehyde; from 41-108% for acetone; from 45-73% for acrolein; 31-75% for propionaldehyde; from 63-140% for crotonaldehyde; from 62-90% for 2-butanone and from 42-58% for butyraldehyde. The lowest “tar” yielding product gave the most variable data. These levels are generally in line with those determined for selected volatiles.

Related documents

CRM 74 - Determination of Selected Carbonyls in Mainstream Cigarette Smoke by High Performance Liquid Chromatography (HPLC) (August 2019)

Report - 2012 Collaborative Study on B[a]P, VOCs, and Carbonyls in Mainstream Cigarette Smoke (August 2019)

Report - Updates of CORESTA Recommended Methods after Further Collaborative Studies Carried Out under Both ISO and Health Canada Intense Smoking Regimes (December 2013)