

Cloning and Sequencing of Helper Component Proteinase Gene of a New Isolate of Potato Virus Y in *E. coli.*

WANG Yuanying Tobacco Research Institute, Chinese Academy of Agricultural Sciences

Tennessee,USA Sept. 2008

contents

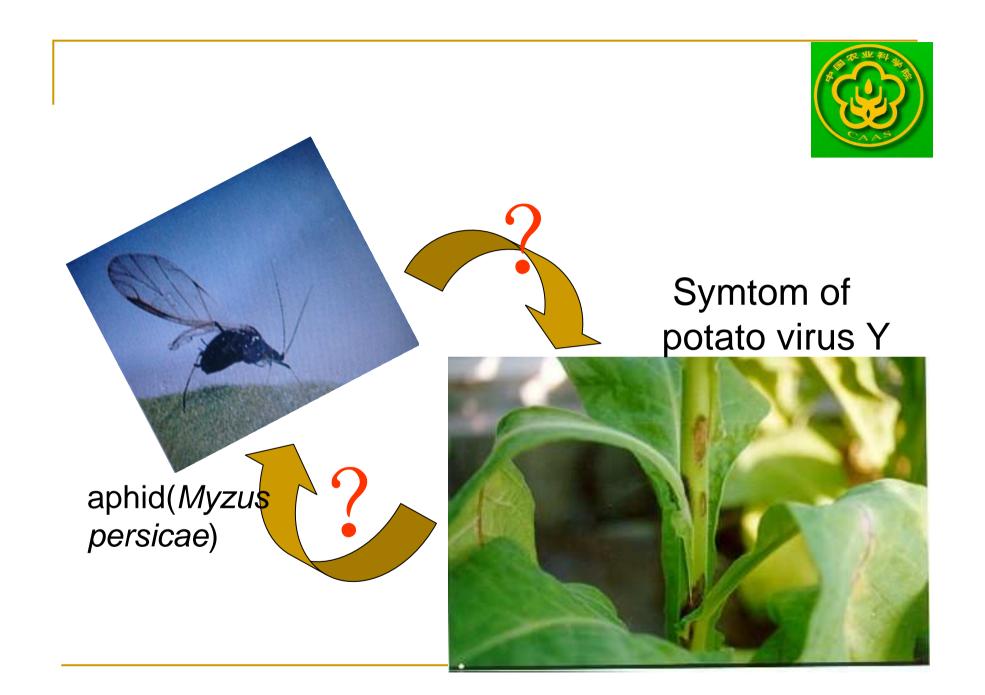
INTRODUCTION

MATERIALS AND METHODS

RESULTS

DISCUSSION

INTRODUCTION



- The potato virus group is the largest of the 34 known plant virus groups and families.
- The representative of this group is potato virus Y (PVY). PVY can be transmitted non-persistently by aphids and is mainly hazardous to potato and tobacco plants.
- The PVY transmission by aphids depends on two proteins encoded by PVY, including HC-Pro and CP.
- HC-Pro is one of the most multifunctional and complex virus proteins and has played an important role in all aspects of virus life history, such as protease activity, participating in polyproteasome processed, and transmission of the virus by aphids mainly through the N-terminal KITC sequence, C-terminal PTK sequence

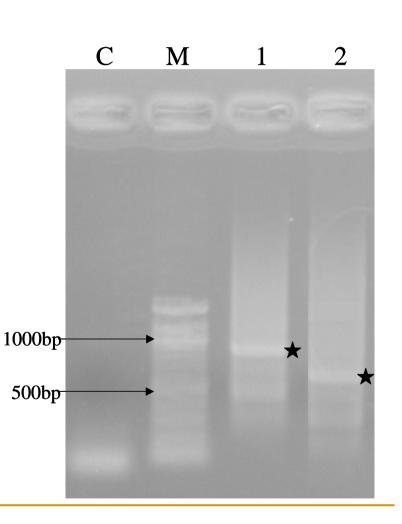
INTRODUCTION

- In addition, HC-Pro also has other functions, such as participating in transmission of the virus in some seeds, systemically infecting the host plant and suppressing gene silencing so as to achieve associative development.
- The viral RNA corresponding to open reading frames, regulatory elements, non-coding sequences or silent mutations encodes a single and large polypeptide.
- In order to understand the virus life cycle and design anti-viral strategy, a novel Potato virus Y strain was isolated from Qingzhou in Shandong Province. The encoding DNA sequence of the HC-Pro region was obtained by RT-PCR and DNA splicing methods.
- HC-Pro was expressed in E. coli, induced by IPTG and purified by electroelution.

MATERIALS AND METHODS

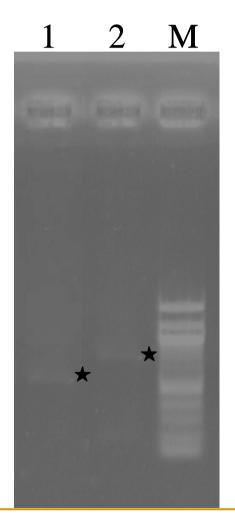
- Materials and Reagents
- Materials:
- PVY was isolated by Tobacco Research Institute of CAAS in Qingzhou, Shandong Province.
- The host for propagating and preserving PVY was tobacco NC89. E. coli BL21 (D3)
- The expression vector pET28a+ were supplied by Plant Protection Institute of CAAS.
- Reagents:
- dNTPs, T4-DNA ligase, DNA restriction enzyme (Ncol, Bsml and Xhol), 100bp DNA ladder marker were from NEB Company.
- The virus RNA extraction kit and PCR purification kit were from Qiagen Company.
- RT-PCR reagent kits were AccessQuickTM RT-PCR System of Promega.

MATERIALS AND METHODS

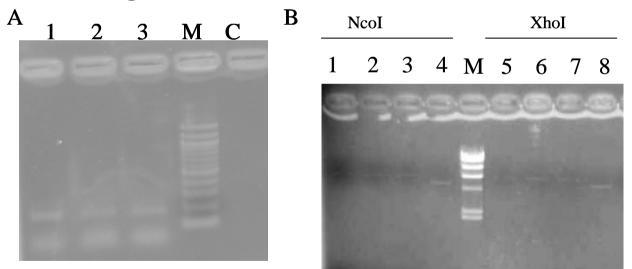


- Methods
- RNA extraction from the virus
- RT-PCR Amplification of two specific fragments
- Construction of prokaryotic expression vector pET-28a+-HC-Pro
- Prokaryotic expression of HC-Pro in *E.coli* BL21
- Determination of HC-Pro
- Purification of HC-Pro

2008_TSRC24_WangYuanying.pdf


RT-PCR amplification of HC-Pro

- Two fragments of HC-Pro were amplified by RT-PCR.
- Fig.1 RT-PCR amplification for two fragements.
- Lane1: 920 bp fragment amplification (downstream) by RT-PCR;
- lane 2: 630 bp fragment amplification (upstream) ¹⁰ by RT-PCR. Both of the positive fragments were marked by star. Lane M: 100 bp DNA ladder marker. Lane C: negative control of RT-PCR reaction



- Construction of pET-28a+-HC prokaryotic expression vector
- The 630 bp fragments were cut with Ncol and Bsml and 920 bp fragments were cut with Bsml and Xhol.
- The double-digestion products were separated by 1% agarose gel electrophoresis.
- Fig.2 Double digestion of the two fragments.
- Lane 1: double digestion of 630 bp fragments.
- Lane 2: double digestion of 920 bp fragments. fivestars indicate fragments amplified
- Lane M: 100 bp DNA ladder marker

The products of double-digestion in Lane 1 and 2 were purified and ligated into the linear vector pET-28a+ and then transformed into *E. coli* BL21 (DE3) competent cells. The clones were detected by PCR with p2 and p3 primers. The results were shown in Figure 3A.

The positive recombinant plasmids were extracted by the alkaline lysis method and detected by digestion with Ncol and Xhol. The results were shown in Figure 3B.

- Fig.3 The recombinant plasmids were detected by PCR and digestion with Ncol or Xhol .
- A: Lane1 to lane 3 are the PCR products amplified with p3 and p2 primers for the 180 bp fragment. Lane M is 100 bp DNA ladder marker. Lane C is negative control of PCR amplification. Fivestar indicates fragments amplified with p3 and p2 primers.
- B: Lane1 to lane 3 are the products with Ncol digestion. Lane 4 is the liner pET-28a+ produced with Ncol digestion. Lane 5 to lane 7 are the products with XhoI digestion. Lane 8 is the liner pET-28a+ produced with XhoI digestion. Lane M is λ DNA with Hind III digestion marker. Fivestars indicate fragments digested.

The Full-length Sequence Analysis of HC-Pro

	90 30	GAT CAT	CCT AC	GA TAT	ATG AC	A CAA	GG GCJ	AAT TO	GGC	IG GAC	GGA T	G AAG	F W	AGC 1	GAA	-	CA AG S S	222	CAG	G GTT	TCA A	GAT	AT	1
HC-Pro full-length DNA	193	ACC TGC T C	AAG AT K I	GC TAC C Y	CCG TO	T TTA L				TA ATG I M	GCG A	T GCA	GA GI R V	223	TGT C		50 SR	124 3	TTA L	A GGC	GTG G	A TGT C	AC. T	91 31
sequence is 1 389 bp	270 90	CGA TTG R L	TTA AA L N	AT GGT D G	AGT GA S I					AG ATA K I						C TTG		TAC G Y	CAA Q	C CAA	tgt g C	T ACC	CC" P	181 61
with an ORF encoding	360 120	GAA ATT E I	AGT CT S L	AT CTG D L	GTT GJ V 1	A CCG P	CT GAJ T E	CTA A	F CAC H	TA GAG L E	ATC T	G ACA . T	TC TT F L	AAG 1 K	AAA K	T GTC	TG CA V H	TTT G F	CGC R	UA GAT (D	GAC A D	G GCG A	66 G	271 91
a protein of 463 amino	450 150	GGA AAG G K	TTG AA L K	TC TTT F F	AAT TJ N J	J AAT N	IT CTO I L			AA AAC K N			Q S	CAA (Q	AAG K	G GAG	TA GG I G	TCT A S	AAG K	A TTC	GAA G E	C AAT N	TT F	361 121
acid residues. The	540 180	AAG AAA K K	AAC AT N I	CG GAT T D	AGA AC R 1		Q K				GAA T E		AGC TI S I		Q Q	G GCT A	AG GT Q V	TGG C W	gaa E	T CGT	ACA G T	A AAT N	GA. E	451 151
molecular mass and	630 210	AAT GCA N A	GAT AA D K	AG CTG Q L	AAC CA	f GAT D	CA TGI S C	CTG TO L :	Y TAT	AC TTG N L	TGG A	A AAT N	uaa go Ka	GCC /	S	A CTA	AT AA N B	AGG A R	TTT F	G TTC	ATC I	C GAC D	GG G	541 181
pl predicted with	720 240	TCA GCA S A	G Y	CG AAG A K	P	D	EI	E I	F	N Y	S I	F	R F	K	A	н	E Y	R	Q	G	L	F	AAI N	631 211
BioEdit are 52 kD and	810 270 900	CGG AAG R K	F R	CT GAG	L /	D D	P L	V I	I	AC TTA N L GC TCG	G	I	LA	K	R	T	N G	P	H	L	AAT C	F GAA E	TA' Y	721 241
8.10, respectively.	300	C T	C C	Y P	V Y	Y	G N	D	K	s s	T	c	KK	S	۷	G	Q P	R	K	Y	G	K		271
•	330	K Y	D Q	S G	N S	G	V I	L	н	AG AAG K K	T	P	Y P	F	T	S	VE	A	S	G G	D	L	AL. T	301
	1080 360	I N	M L	TT GCG L A	FI	I	IN	Y	C	G F	Q	R	IÅ	¥	L	ш	SE	N	G	K	L	D	۷	331
Fig.4 The nucleotide and		GAT CTG D L	ATG AT	ΡT	TGG CC	T	LG	K	P	C V	Ш (D	VB	K	K	T	DF	K	A	UA GAT	GAA G E	r agt S	1 AT I	108 361
amino acid sequences of	1260 420	CGG ACA R T	GAA AC E T	D H	GTC GJ	L	RI	P	L	CA GAG A E	D .	н	D V	P	Y	A TIT	AA AT K I	ATG A	Q	FT GCT	ACT T	T ACT	1 GC A	391
HC-Pro.	1350 450	GCT AAT A N	L F	TT ATT L I	Q I	S	IGC GT/ S V		A GCA	TG AAA L K	_	r cat H	G Y	T	T	g caa Q	GT TC G S	F	S	C GAC	GTG C V	CAT H	I TG	126 421
	1389 463												GT G	GTT C						IG TCT	100		1 GA D	135 451

2008_TSRC24_WangYuanying.pdf

 Tabe1. The alignment of the nucleotide and amino acid sequence of HC-Pro in the research with those originated from some other strains

•	PVY★	nucleotides(%)	Amino acids(%)	NCBI accession number			
	PVY NE11	98	99.8	DQ157180.1			
	PVY NTN	97	99.8	EF026075.1			
	PVY N	96.6	99.3	AJ890342.1			
	ΡΥΥ Ο	96.2	99.1	AJ890349.1			
	PVY C	84	92.3	AJ890348.1			
	Τνμν	59	50	NC_001768			
•	TEV	43	45.5	NC_001555			

The gene had more than 96% homology with other PVY strain in nucleotide sequences and more than 92% homology in putative amino acid sequences.

The conserved domains of HC-Pro were predicted by using NCBI software. HC-Pro posses a C6 peptidase, a zinc finger domain (Figure 5I) which was combined with N-terminal and metal ions, KITC and PTK domains (Figure 5 II and V) which control the transmission by aphids, FRNK domain(Figure 5 III) which is involved in proliferation and infection of the virus. The VRD RNA-binding domain (Figure 5 VI) and CCC domain (Figure 5 IV) which is involved in participation of virus necessary for long-distance transport.

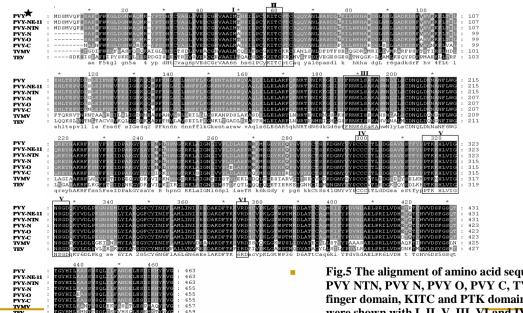
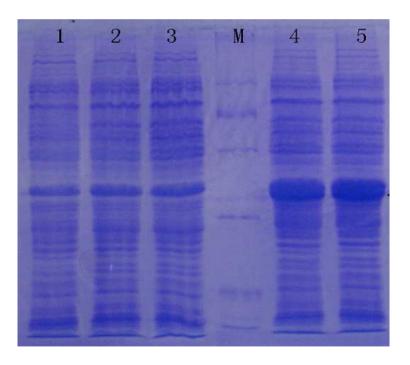
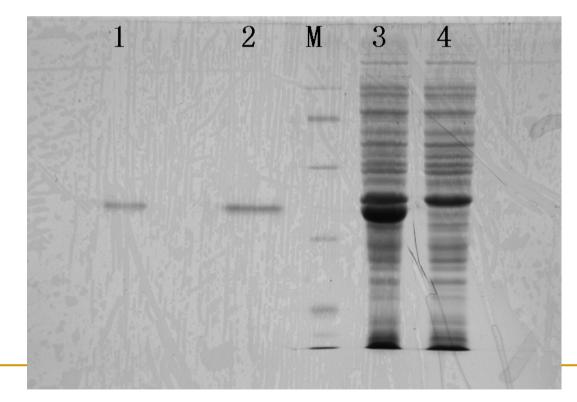



Fig.5 The alignment of amino acid sequences encoded by HC-Pro genes from PVY NE-11, PVY NTN, PVY N, PVY O, PVY C, TVMV, TEV and PVY★ (this study). The zinc finger domain, KITC and PTK domain, FRNK domain, VRD domain and CCC domain were shown with I, II, V, III, VI and IV, respectively.

- Prokaryotic expression of HC-Pro in *E.coli* BL21(DE3)
- A 52 KD protein band was induced in accord with the prediction.

Fig.6 Prokaryotic expression of HC-Pro in *E.coli* BL21(DE3).

Lane 1: total proteins of BL21(DE3).


Lane 2 and 3: total proteins of BL21 (DE3) with pET28a+-HC-Pro before the IPTG induction.

Lane4 and 5: total proteins of BL21 (DE3) with pET28a+-HC-Pro after the IPTG induction.

Lane M: protein molecular weight standards. Fivestar indicates HC-Pro protein expressed in *E.coli* BL21(DE3).

- The purification of HC-Pro protein with electroelution:
- Purification of HC-Pro protein was performed by the electroelution method. A single band was visualized after electroelution (Lane 1) and dialysis (Lane 2).

Fig.7 Purification of HC-Pro protein by electronelution.

Lane 1: the HC-Pro protein after electroelution.

Lane 2, the HC-Pro protein after dialysis,

Lane 3: the total proteins of BL21 (DE3) + pET28a+-HC-Pro after the IPTG induction,

Lane 4: the total protein of BL21 (DE3) + pET28a+-HC-Pro before the IPTG induction. Fivestar indicates HC-Pro protein.

DISCUSSION

- In this study, we cloned a cDNA of HC-Pro from a novel isolate of PVY. Because the full length of HC-Pro is 1.4 kb approximately, and the DNA length amplified by Taq polymerase was limited to 1 kb, two sets of primers were designed to amplify upstream fragment (p1, p2) and downstream fragment (p3, p4). The full length of HC-Pro cDNA was then cloned by RT-PCR and DNA splicing.
- Positive clones were detected by PCR amplification with primers of p3 and p2 for amplifying the 180 bp overlap fragment between upstream and downstream so as to determine the two fragments that had been recombined correctly with the vector pET28a+.

DISCUSSION

- According to the alignment of amino acid sequences for HC-Pro protein, the HC-Pro protein is a functional protein.
- To study the biological functions, we prepared the HC-Pro protein by prokaryotic expression.
- The protease activity and other functions, such as participating in polyproteasome processed and transmission of the virus by aphids for the HC-Pro protein are now studied in my lab.

