Analysis of Flue-cured Tobacco Extracts by Comprehensive Twodimensional Gas Chromatography-Time-of-flight Mass Spectrometry

Zhang Jianxun From zhengzhou Tobacco Research Institute, CNTC, China

2009/1/5

1. Introduction

Chemical composition of tobacco, extremely complex, more than 4000 estimated

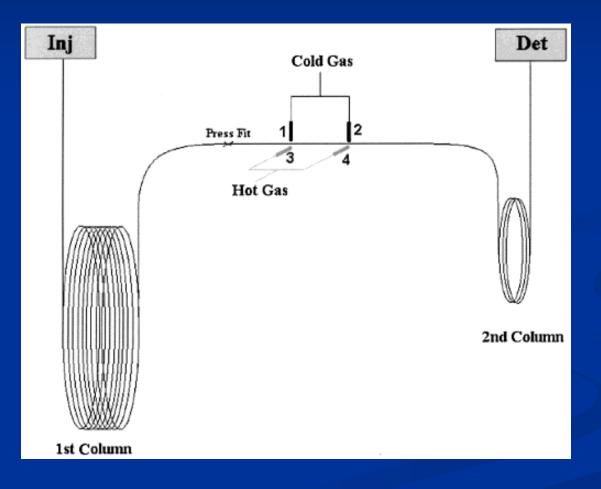
The physical and chemical properties of tobacco leaf, influenced by many factor, such as genetic, soil type and nutrients, climatic conditions, plant disease, stalk position, harvesting, and curing techniques.

The change in any of these factors can markedly alter the chemical composition of leaf and thus affects smoking quality

1. Introduction

Instrumental analysis methods, employed to analyze composition of tobacco leaf, including GC, GC/MS, HPLC, CE, NMR, IR, et al

GC and HPLC have been demonstrated as the most effective analytical methods


Tobacco are so complex that the separation power of one dimensional GC or HPLC, even with MS, may not be sufficient to solve emerging analytical challenges

1. Introduction

GC×GC/TOF-MS has been demonstrated to be a powerful analytical tool for the determination of the compounds in complex mixtures

High resolution of GC×GC-TOFMS method has been developed for separation and identification of chemical composition in flue-cured tobacco extracts.

The Principle of Comprehensive two-dimensional gas chromatography

2.1 Conditions of GC-MS and GC-TOFMS

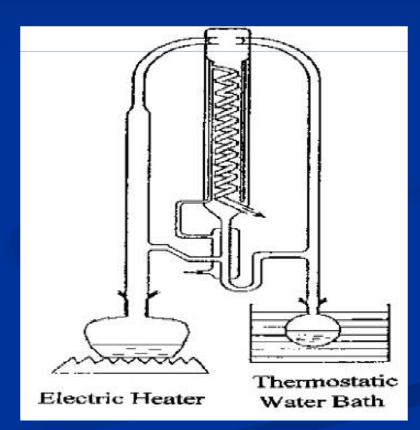
GC/FID/MS	QP 2010, Shimadzu			
Capillary column	DB-Petro (50m*0.2mm *0.1µm)			
Program temperature	50°C 2°C/min 260°C 10°C/min 280°C			
Carrier gas	helium			
Injection volume	3 μL			
Split ratio	60:1			
Mass Range	33~450 amu			
	Agilent 6890N, Pegasus 4D GC×GC-TOFMS			
GC/TOF-MS	Agilent 6890N, Pegasus 4D GC×GC-TOFMS			
GC/TOF-MS Capillary column	Agilent 6890N, Pegasus 4D GC×GC-TOFMS DB-5 50m*0.2mm*0.33µm			
Capillary column	DB-5 50m*0.2mm*0.33µm			
Capillary column Program temperature	DB-5 50m*0.2mm*0.33μm 50°C 2°C/min 270°C 10°C/min 270°C(25min)			
Capillary column Program temperature Carrier gas	DB-5 50m*0.2mm*0.33µm 50°C 2°C/min 270°C 10°C/min 270°C(25min) helium			

2.2 GC×GC Apparatus and Column Sets

GC×GC System:

- Agilent 6890 GC (Agilent Technologies, Wilmington, DE);
- KT-2001 Retrofit prototype Cold-jet modulator (Zoex Corp,Lincoln,NE);

Column system:


- the first dimensional column DB-Petro ($50 \text{ m} * 0.2 \text{ mm} * 0.5 \mu \text{m}$), the second dimensional column DB-1701(2 m * 0.1 mm * 0.1 μ m),
- Column Connection, by means of a press-fit connector

2.3 Time-of-Flight-Mass spectrometer

Instrument	Pegasus III TOF-MS(Leco Corp., St Josephs, MI, USA)			
Conditions				
EI	70eV			
Transfer line temperature	270°C			
Ion source temperature	200°C			
Detector voltage	1550V			
Mass Scan	33-450 m/z with 50 spectra/s			

2.4 Preparation of tobacco extract sample

Tobacco sample : M₂OL(zimbabwe), C₂F(Yunnan, China), C₂F(Henan, China), C₂F(**Fujian**, China) **Sample preparations :** Simultaneous distillation and extraction(Fig.1)

3.1 Selection of GC×GC Operation condition

Table 1

Set	1 st column	2 nd column
Length (m)	50	2.0
Diameter (mm)	0.2	0.1
Stationary phase	DB-Petro ^a	DB-1701 °
Film thickness (µm)	0.5	0.1
Temperature program	$50^{\circ}C \rightarrow 2^{\circ}C/\min \rightarrow 270^{\circ}C(20\min)$	$50^{\circ}C \rightarrow 2^{\circ}C/\min \rightarrow 270^{\circ}C(20\min)$

Carrier gas: helium, column head pressure: 600 kPa

a DB-Petro (J&W Scientific, Folsom, CA, USA), a 100% Dimethylpolysiloxane column

b DB-17ht (J&W), a 50% Phenyl-methylpolysiloxane column

c CEC-WAX (Chrom Expert Company, USA) a Polythylene glycol

d DB-WAX(J&W) a Polythylene glycol

e DB-1701(J&W), a (14%-Cyanopropyl-phenyl)-methylpolysiloxane

3.2 1D-GC/FID and 1D-GC/MS analyses

- FID: 120 components detected
- MS: 46 components detected, shown in Table 2
- Common shortage: peeks overlap, partially resolved peaks, and shoulders

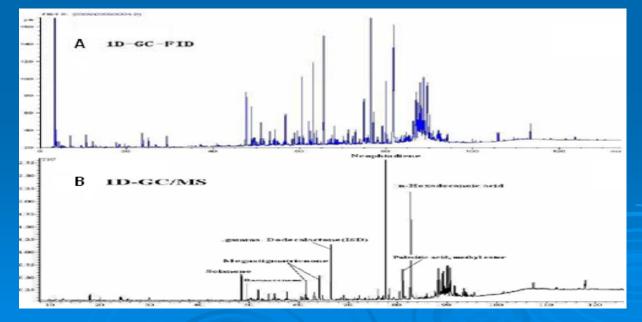


Fig.2 TIC of tobacco extracts by 1D-GC/FID (A) and 2D-GC/MS(B)

Table2 Components detected by 1D-GC/MS in tobacco extraction

RT/min	SI	Name	RT/min	SI	Name
7.17	96	(S)-(+)-1,2-Propanediol	63.46	89	Megastigmatrienone
9.61	88	3(2H)-Furanone, dihydro-2-methyl-	63.80	74	Benzene, (4,5,5-trimethyl-1,3-cyclopentadien-1-yl)-
10.85	97	Furfural	64.18	92	Megastigmatrienone
12.44	85	2-Furanmethanol	64.88	91	2-Cyclohexen-1-one, 4-(3-hydroxy-1-butenyl)-3,5,5-trimethyl-
17.89	86	Cyclopentane, 1,2,3,4,5-pentamethyl-	66.57	93	.gamma. Dodecalactone
19.96	91	Cyclohexane, 1-methyl-2-propyl-	72.21	93	Tetradecanoic acid
24.01	95	Benzyl Alcohol	74.13	87	Solavetivone
24.30	93	Benzeneacetaldehyde	77.07	90	2-Pentadecanone, 6,10,14-trimethyl-
25.47	91	2-Acetylpyrrole	77.52		Neophtadiene
29.85	94	Phenylethyl Alcohol	79.20	93	Benzeneacetic acid, 2-phenylethyl ester
48.46	92	Solanone	79.31	83	Linolenic acid, methyl ester
49.66	96	β-Damascenone	81.07	94	Palmiticc acid, methyl ester
50.33	83	, Benzene, 1-methyl-4-[(1-methylethylidene)cyclopropyl]-	82.65	93	n-Hexadecanoic acid
50.53	86	Naphthalene, 1,2-dihydro-1,4,6-trimethyl-	83.69	89	3-(4.8,12-Trimethyltridecyl) furan
51.60	73	4-(2,4,4-Trimethyl-cyclohexa-1,5-dienyl)-but-3-en-2-one	88.93	93	Linoleic acid, methyl ester
51.73	85	β-Damascone	89.12	85	Linolenic acid, ethyl ester
51.92	87	2-Butanone, 4-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-	90.20	93	Phytol
55.74	83	1,3,7,7-Tetramethyl-9-oxo-2-oxabicyclo[4.4.0]dec-5-ene	90.44	93	Linoleic acid
57.64	89	Dihydroactinidiolide	90.62	93	Stearic acid, methyl ester
60.50	88	Megastigmatrienone	90.85	83	Oleic acid
61.55	93	Megastigmatrienone	107.22	92	Pentacosane
61.78	76	2-Butanone, 1-(2,3,6-trimethylphenyl)-	107.53	96	1,2-Benzenedicarboxylic acid, diisooctyl ester
63.09	79	3-Hydroxybetadamascone	117.87	92	Heptacosane

3.3 GC/TOFMS analyses

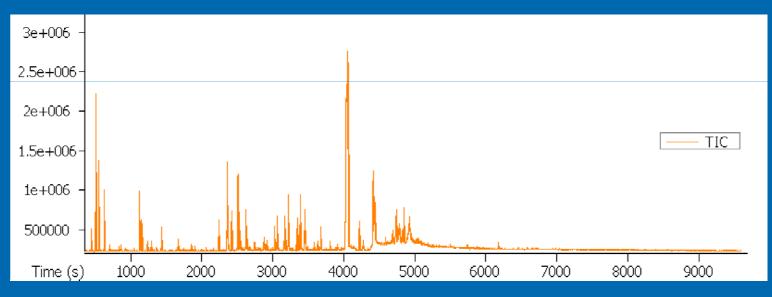


Fig. 3 TIC of tobacco extract by GC/TOFMS

79 components detected (Similarity>800)
Peak Overlap, partially separation peaks, shoulders, and shift of base line

3. Results and Discussions3.4 GC×GC analyses

Tobacco extracts sample was analyzed by GC×GC/FID and GC×GC/MS, respectively. The result shown as Figure 4 indicated:

- GC×GC/ FID: 2100 components identified
- GC×GC/TOFMS: 1093 components identified (Similarity>800),
- which is over 20 times than that by 1DGC-MS method
- Good resolution, no peak overlap
- Groups separation can be achieved by adjusting the frequency of modulation period

3.4 GC×GC analyses

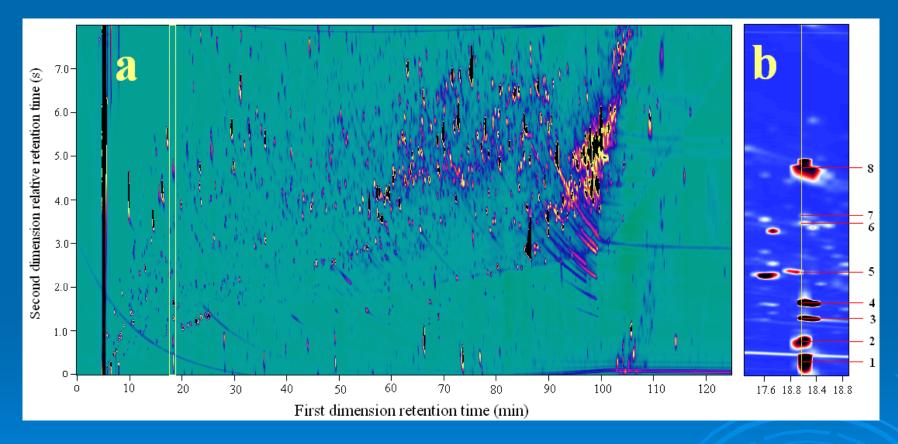


Figure 4. GC×GC separation of a typical tobacco condensate (a) and enlargement (b) Compounds

3.5 Identification of components in tobacco

Four tobacco extracts (Zimbabwe, Yunnan, Henan, and Fujian) were analyzed by GC×GC/ TOFMS method. The analytical result of Tobacco extract (Zimbabwe) was shown as table 3

Table 3. Compounds identified by GC×GC/TOFMS (similarity>800)

Group	Num		Num
Hydrocarbons	244	Oxygen-containing compounds	786
Nitrogen-containing compounds	53	Ketones	245
pyridines	17	Aldehydes	82
pyrazines	5	Fruans	23
quinolines	6	Phenols	22
pyrazoles	3	Alcohols	167
indoles	2	Esters	134
pyrroles	2	Acids	62
nitriles	5	Others	51
others	13	Sulfur-containing compounds	10
Total		1093	

3.5 Identification of components in tobacco

244 hydrocarbons, 53 nitrogen-containing compounds, 786 oxygen-containing compounds, and 10 sulfur-containing compounds were Identified from Zimbabwe tobacco extract
 Oxygen-containing compounds is the most abundant group , including ketones, aldehydes, furans, phenols, alcohols, esters and acids

Nitrogen-containing compounds include pyridines, pyrazines, quinolines, pyrazoles, indoles, nitrile derivatives

3.6 Comparison of components in different tobacco

- Four tobacco extracts(Zimbabwe, Yunnan, Henan, and Fujian) were investigated
- Tobaccos from different growing district
 Difference of Chemical component group
 Difference of Chemical component content
 Difference of the content in the same group components

4. Conclusions

- GC×GC in combination with TOFMS detection has been demonstrated as a powerful tool for the investigation of chemical composition in tobacco extracts
- A total of 1093 compounds were tentatively identified in flue-cured tobacco extracts, including 244 hydrocarbons, 53 nitrogen-containing compounds, 786 oxygen-containing compounds and 10 sulfurcontaining compounds
- GC×GC method could distinguish tobaccos from different growing districts by analyzing the tobacco extracts.

Thank for your attention!

