

The Influence of Cigarette Base Paper Properties on their CO₂ Diffusivities and the Correlation with ISO Smoking Yields

Matthew Hesford and Paul Case

British American Tobacco, Group R&D, Regents Park Road, Southampton, SO15 8TL, UK Matthew Hesford@bat.com

63rd Tobacco Science Research Conference, Amelia Island, Florida 27th – 30th September 2009

32009(63) - Document not peer-reviewed

Contents

- Introduction the role of cigarette paper and its physical properties;
- Cigarette paper diffusivity;
- Aims of the study;
- Experimental design;
- Data collection and raw data;
- Response surface regression;
- Effect of diffusivity on smoke yields;
- Conclusions.

Introduction

- Cigarette paper plays a significant role in (amongst other factors):
 - Cigarette manufacture
 - Tensile strength and stretch
 - Visual appearance
 - Opacity and whiteness
 - Mainstream smoking yields
 - Increasingly regulation-driven environment.
 - Effects of changing cigarette paper physical parameters on mainstream smoke yields is of interest to product developers
 - LIP Performance (ASTM E2187-04)
 - Not specifically addressed here

Cigarette Paper Diffusivity vs Permeability

Diffusion: driven by concentration gradient

Permeability: driven by pressure gradient

Why is Diffusivity Important?

Burning coal approaching banded region

Burning coal shrinks while burning through band

Coal expands and heats up after burning through band

Aims of the Study

- Well designed existing systematic experiment.
- Q. How do the filler and fibre contents and paper permeability influence diffusivity?
- Q. What effects does diffusivity have on mainstream smoke yields?

Schematic of Experimental Design

Note:

- No burn additive
- Wood furnish

- Statistically designed experiment
- Based on a Central Composite design
- Minimum number of experiments to fully characterise variables
- Wide operating window

Limitations

- Correlation study (diffusivity vs smoke yields)
 - Do not yet know how to fully control diffusivity
- No burn additive

Cigarettes and Analysis

Cigarettes manufactured on a Molins Mark 8 cigarette maker running at 750 cigarettes per minute, without filter ventilation.

Cigarette Parameter	Values and Units
Physical Measurements	
Cigarette length	84 mm
Tobacco column length	64 mm
Circumference	24.75 mm
Filter Measurements	
Filter length	20 mm
Filter Pressure Drop	70 mm W.G.
Filter material	Cellulose Acetate
Tobacco Rod Weight	690 mg
Blend Chemistry	
Nicotine	2.3 %dwb
Reducing sugars	11.5 %dwb
Total sugars	13.0 %dwb

- 20 port Filtrona model 400 linear smoking machine.
- Smoked to the ISO standard butt length of filter
 + 8mm or overtip + 3mm, whichever is the greater.
- NFDPM, Nicotine and CO yields, puff number, static burn rate.
- Diffusivity measurements performed on a Sodim Instrumentation diffusivity meter.

Response Surface Regression

- Minitab 15
- Effect of:

- Filler;
- Fibre;
- Permeability

50 CU Cigarette Paper (CP50-23VGM 1.0 KCM) – Top Side (x 10 000 Magnification)

on diffusivity and physical characteristics (e.g. tensile strength, opacity).

- Effect of diffusivity on smoking yields.
- (Quadratic equations do not explain the data, but do represent the relationships mathematically).

Diffusivity vs Filler and Fibre

Surface Plot of Diffusivity vs Fibre and Filler

Diffusivity = 0.993 + (0.128 x Filler) - (0.0443 x Fibre) + (0.0133 x Permeability)- (3.368 E-5 x Permeability squared)R-squared = 96.6%

Hold Values Permeability (CU) 110

Diffusivity vs Filler and Permeability

Surface Plot of Diffusivity vs Permeability and Filler Diffusivity = 0.993 + (0.128 x Filler) - (0.0443 x Fibre) + (0.0133 x Permeability)- (3.368 E-5 x Permeability squared) R-squared = 96.6%3 Diffusivity (cm/s) 2 **Hold Values** Fibre (gsm) 23 50 12 100 150 Permeability (CU) Filler (gsm) 200

TSRC2009(63) - Document not peer-reviewed

Diffusivity vs Permeability and Fibre

TSRC2009(63) - Document not peer-reviewed

TSRC2009(63) - Document not peer-reviewed

Effect of Diffusivity on...

Diffusivity Trend	Response	Response Trend
INCREASE	NFDPM and CO	DECREASE
INCREASE	CO:NFDPM	DECREASE
INCREASE	Static Burn Rate	INCREASE
INCREASE	Puff Number	DECREASE
INCREASE	LIP pass rate	DECREASE

Therefore high diffusivity advantageous for lowering smoke yields (but not for LIP pass-rate!)

—— Balance between filler & fibre

Tensile Strength vs Filler, Fibre and Permeability

Opacity vs Filler, Fibre and Permeability

C2009(63) - Document not peer-reviewed

Conclusions

- Base-paper parameters that influence diffusivity:
 - Increase filler content
 - Decrease fibre content
 - Increase paper permeability

Increase diffusivity

- Effect of CO₂ diffusivity on smoking yields:
 - NFDPM, CO, nicotine ↓
 - Puff number ↑
 - Static burn rate ↑

As diffusivity increases

 Diffusivity can explain differences in smoke yields for different papers

Acknowledgements

- Steven Coburn
- Leonardo Nappi
- Wattens for manufacturing papers

Thank you!

www.bat-science.com

we welcome your comments

