FUNCTIONAL GENOMICS APPROACHES TO HARM REDUCTION IN TOBACCO PRODUCTS

Michael P. Timko, PhD University of Virginia

64thTobacco Science Research Conference Hilton Head Island, SC USA October 4, 2010

Tobacco use is a leading preventable cause of disease, disability, and death worldwide

In 2009 the National Survey on Drug Use and Health (NSDUH) reported that 27.7% of the US population age 12 and older (~ 70 million people) used a tobacco product at least once in the month prior to being interviewed.

- 58.7 million cigarette smokers (23.3 % of the population)
- 13.3 million smoked cigars (5.3%)
- 8.6 million used smokeless tobacco (3.5%)
- 2.1 million smoked tobacco in pipes (0.8%)

http://oas.samhsa.gov/NSDUH/2k9NSDUH/2k9Results.htm

The World Health Organization (WHO) estimates that there are ~ 1.1 billion regular smokers in the world today, and ~3 million deaths caused by tobacco use every year.

The Centers for Disease Control and Prevention (CDCP) reported that cigarette smoking results in more than 443,000 premature deaths in the US each year — about 1 in 5 deaths — and an additional 8.6 million people suffer with a serious illness caused by smoking.

Most consumers of tobacco products are unwilling or unable to give up their use

The primary reason people use tobacco products is to obtain **nicotine**.

Accounts for ~ 95% of the total alkaloid content in commercial tobacco

Nornicotine and anatabine are the most abundant minor alkaloids \sim 2-3% of the total each; anabasine \sim 0.3%.

(S)-3-(1-methylpyrrolidin-2-yl) pyridine

Source: PharmGKB and Stanford University

Nicotine is readily absorbed into the bloodstream from a chewed, inhaled, or smoked tobacco product.

Nicotine distributes quickly, crosses the blood-brain barrier to enter the central nervous system (CNS) where it binds ganglion and CNS-type nicotinic acetylcholine receptors (nAChRs) triggering epinephrine (adrenaline) release which stimulates the CNS and transiently increases blood pressure, respiration, and heart rate.

Nicotine also increases levels of the neurotransmitter dopamine that affects the brain pathways for reward and pleasure.

Numerous pathological conditions (lung and oral cancers, chronic obstructive pulmonary disease (COPD), cardiovascular (CV) and respiratory disorders) are linked to chronic smoking and use of other forms of tobacco products and exposure to nicotine and its metabolized derivatives in the body. Tobacco products contain a complex mixture of > 4000 chemical constituents

In the absence of complete cessation of use, the provision of tobacco products to the consumer with reduced levels of "harmful" constituents is an acceptable goal

Our Research Goals:

Broadly understand the integrated circuitry that regulates the formation and accumulation of nicotine and related alkaloids in plant cells

- what genes are responsible for the biosynthesis of the major and minor alkaloid of tobacco
- how are these genes regulated [transcriptional machinery regulatory elements and protein factors]
- what cellular processes control metabolite flux and alkaloid accumulation

Use our acquired knowledge to selectively alter leaf chemistry and composition to reduce levels of "harm components" in tobacco products

- major (nicotine, nornicotine) / minor (anatabine, anabasine, anatalline, myosmine) alkaloids
- tobacco specific nitrosamine (TSNA) levels in "cured" and "fermented" tobacco products
- various N-rich substrates, simple and complex sugars (lignins), etc that form particulates and volatiles.

Evaluate whether these "Harm Reduced" tobacco products demonstrate a differential ability to influence (potentiate, activate, repress) human cellular process.

- establish in vitro human lung and oral epithelial cell culture exposure systems
- use transcriptomic, proteomic and metabolomic approaches to describe the effects of whole smoke, smoke condensate (CS), and tobacco soluble extracts (SE) on cellular function

A large number of biotic and abiotic factors influence tobacco growth and the biosynthesis and accumulation of tobacco alkaloids

Abiotic Influences

Light (daylength) Temperature Humidity

Water availability (yearly/cropping season)

Mechanical wounding (Tilling)

Pesticide/Herbicide Treatment

Soil Nutrition (N, P, K, S, Ca, etc)

Biotic Influences

Disease Agents Viruses Bacteria Fungi Nematodes Parasitic plants

Herbivores

Phytohormonal changes (Developmental) (Inducible)

Phytohormonal changes underlie the control of nicotine and total leaf alkaloid content

The basic biochemistry of nicotine and minor alkaloid biosynthesis in tobacco is known

Two main branches contribute to nicotine formation – one leading to a pyridine ring (nicotinic acid) and the other a N-methylpyrrolidine ring

Quinolinic acid phosphoribosyltransferase (QPT) and Putrescine N-methyltransferase (PMT) are branch point regulators, A622 is thought to be a nicotine synthase

Describing global transcriptome changes during alkaloid formation

Goal: To uncover the transcriptional factors and cellular signaling pathway components involved in directing the synthesis of nicotine and minor tobacco alkaloids through a comparative transcriptomics based approach using long oligonucleotide-microarrays.

Based on curated a dataset of 1.5 million gene-space sequence reads (GSRs) generated by MF technology representing an estimated minimum of 90-95% of tobacco gene space

The Tobacco Genome Initiative (TGI) PM USA - NCSU

Plus > 83,000 publicly available cDNAs / ESTs

TOBFAC Database [<u>http://compsysbio.achs.virginia.edu/tobfac/</u>] - 64 well-characterized transcription factor (TF) families in tobacco.

Rushton, et al. (2008) Plant Physiology 147: 280-295; Rushton, et al. (2008) BMC Bioinformatics 9:53

MeJA induced transcriptome changes in tobacco cells

0.5 H

2.0 H

Bright Yellow 2 (BY2) tobacco cells grown in auxin-depleted media treated with 50 μ M MeJA and then assayed at various times thereafter

Number of genes induced / repressed over time

post-MeJA (H)	0.5	2.0	6.0	12.0	24.0
2-fold	9	690	979	665	3167
4-fold	81	2730	4013	3248	8311
8-fold or greater	172	5187	6287	5340	11216

post-webA (II)	0.5	2.0	6.0	12.0	24.0
2-fold	9	690	979	665	3167
4-fold	81	2730	4013	3248	8311
8-fold or greater	172	5187	6287	5340	11216

post- MeJA (H)	0.5	2.0	6.0	12.0	24.0
p = 0.10	562	2515	3670	3593	5706
p = 0.05	189	761	1093	1017	1856
p = 0.01	85	352	459	440	790

Major Biosynthetic Processes Significantly Up-Regulated by MeJA Treatment

Alkaloid biosynthesis:

Lysine decarboxylase, aspartate oxidase, ornithine decarboxylase, quinolinate synthase, quinolinate phosphoribosyl transferase (QPT2), putrescine N-methyltransferase (PMT1, PMT1a, PMT2, PMT3, PMT4), N-methylputrescine oxidase (MPO), nicotine synthase (A622)

JA biosynthesis:

Lysophospholipase, lipoxygenase, allene oxide synthase, 12-oxophytodienoate reductase, 1-aminocyclopropane-1-carboxylic acid oxidase

Phenlypropenoid, Flavanoid, and Terpenoid biosynthesis:

caffeoyl-CoA O-methyltransferase, PAL, 4CL, C4H quercetin-3-O-glucosidase-6-O-malonyltransferase, vetispiradiene synthase wax synthase

Detoxification and conversion:

Cytochrome P450 monooxygenases (CYP94B1, CYP94C, CYP74C)

Ethylene biosynthesis:

ACC synthase, ACC oxidase, ethylene receptor, SAM synthethase

Hydrolysis of auxin conjugates:

IAA amino acid hydrolase

	MeJA	broadly	activates	alkaloid	bios	ynthetic	aenes
--	------	---------	-----------	----------	------	----------	-------

Gene Designation	0.5 H	2.0 H	6.0H	12.0 H	24.0 H
ODC	1.50	11.33	17.02	13.13	22.60
AO3	0.66	61.01	91.80	101.92	140.31
LDC	1.19	2.39	28.89	53.48	113.65
PMT1	1.46	72.34	90.40	94.31	138.86
PMT1a	1.21	65.54	85.98	76.33	127.89
PMT2	1.18	47.58	64.44	59.24	98.95
PMT3	0.97	54.39	87.34	61.22	180.93
PMT4	1.40	33.00	40.00	32.03	57.60
QPT	14.8	159.45	130.17	124.10	132.01
A622	0.83	57.16	283.20	323.97	567.84

MeJA induced increases in the jasmonate biosynthetic pathway

Regulatory genes induced early and late by MeJA

Early (0.5 H) ~75 genes minimum 8-fold induced-Largely transcription factors, cell signaling components, and oxidation and detoxification

Late (24 H) - Transcription factors, cell signaling components, transporters

Early Induced (0.5 H)		Later induced (24 H)			
	Fold Change	Gene	Fold Change		
ochrome P450 monooxygenase CYP94	B* 220.51	MATE Efflux Carrier	650.31		
M15 JAZ1	86.76	Cytochrome P450 CYP74C3*	559.20		
ytochrome P450	82.39	ZIM15 JAZ1/TIFFY10a	354.39		
IYB-related transcription factor	65.08	MYB-related transcription factor	247.39		
^{>} rotein kinase	56.14	ERF91	230.53		
Cytochrome P450 CYP94C1*	49.38	ERF210	171.21		
ERF43	48.97	Cytochrome P450 monooxygenase CYP94B	[*] 143.51		
JAP1	46.74	ERF29	133.10		
MYB137	38.81	bHLH transcription factor Group N	99.34		
Protein kinase	36.36	ERF161	77.81		
ERF1	35.61	disease resistance protein	74.90		
NAC137	33.11	ERF26	70.89		
ERF171	29.64	ERF16	69.57		
ERF161	28.98	Cytochrome P450	65.17		
NAC165	28.61	Calcium/calmodulin protein kinase	59.44		
ERF123/EREBP1	27.17	MYB25	59.19		
ERF34	25.00	ERF104	58.28		
ERF142	23.44	ERF26	56.71		
ERF29	21.83	MYB162	51.86		
Cytochrome P450	15.92				
Cytochrome P450 CYP74C3*	11.02	CVP04 alon mombers (a) by drawylation reaction:	o on long obein f		
ZIM29	10.37	outin biosynthesis	s on long chain h		
ORC	10.19	CYP74A - oxylipin pathway, biosynthesis of jasm	onic acid and its		

CYP74A - Oxylipin pathway, biosynthesis of jasmonic acid and CYP74B - C6 volatiles (also known as green leaf volatiles).

		Gene Name	0.5	2.0	6.0	12.0	24.0 H
TF families	\rightarrow	bHLH80	19,26095	22.77554	20.49593	32.87435	34.41195
previously		C ZIM54	8,171716	15.05944	16.41073	16.07903	18.29839
implicated in	\rightarrow	ZIM29	10.37856	22.38093	26.019	30.03734	31,9194
regulation of		ZIM15 JAZ1/TIFFY10a	81,4318	200.2678	207.0056	194.1159	354.399
aikaloid			8.783906	13.9031	10.69285	13.12207	19.264
biosynchesis	\rightarrow		10.28535	6.250077	3.021051	1.684482	2.485425
			8.560769	8.240814	4.354299	2.242118	2.772749
		r TAZ5	16.26728	18.8711	11.83132	10.08521	10.82991
Novel TF families		- ↓ TAZ4	15.82708	28.43111	19.70669	19.07123	19.96179
not previously		L TAZ3	10.07997	13.6404	5.556042	7.308234	7.814843
Impilcaced		~ NAC165	28.61289	79.4148	43.74384	21.44671	29.22691
		NAC148	8.738688	8.565065	5.828583	5.357513	6.32293
	\rightarrow	✓ NAC144	25.39449	76.45565	39.40846	20.78165	28.16605
		NAC142	7.740277	10.15413	6.735282	5.823688	7.02466
		L NAC137	33.11684	29.07432	16.71765	15.06963	16.92028
		MYB137	38.81437	75.48642	43.37177	13.60557	33.26423
		MYB126	15.30421	34.33204	24.79423	12.10359	18.67313
		MYB-related transcription	factor 65.08559	296.8879	232.0247	224.3874	247.3969
		/ JAP1	46.74121	96.32362	57.80582	10.47133	27.90388
		ERF91	14.90965	138.116	117.1518	115.3997	230.5319
		ERF43	48.97425	42.9925	12.45338	11.32662	16.94804
		ERF34	25.00929	57.50541	37.41603	5.373373	15.92009
		ERF29	21.83762	93.4457	75.76626	87.87373	133.1093
		ERF221	10.19806	33.25401	24.62997	30.17118	43.54652
		ERF210	7.772942	68.54234	53.99681	96.38171	171.2103
		ERF200	13.13474	5.945172	2.756405	2.200636	1.691165
_	→ .	ERF171	29.64926	40.938	9.566142	9.72084	10.66286
		ERF161	28.98894	35.11224	18.80423	29.79476	77.81196
			9.452124	41.04665	30.88507	27.55179	69.57246
		ERF146	10.07655	17.6723	4.646603	1.09/782	1.201869
		ERF142	22.44951	5.630708	1.303/23	0.950111	1.140815
			000000	30.40427	11.019/4	4.002914	10.09144
			21.17103	20.40/30	20.90191 15.00001	0.41/000	10.00214 6 700074
			(.40429/ 0.5/7400	33./2343	10.09291	3.10900/ 22.01700	0.702274
			0.04/ 192	13.11911 33 1310E	19.00220 21 65265	12 60101	00.20090 00.06616
			30.01383	30.42100 27.00501	21.00200	16 1604	10 0234
		COH2 1/10	0.300000	13 20022	67/050/	5 020606	0 /100/
		C2112 140 C2140 120	9.075600	8 010220	1 212227	3.030000	7 1/680/
			0.9/0082	0.919230	4.040002	0.9109/1	1.140034

Major Groups of Transcription Factors Are Rapidly Induced by MeJA Treatment

NtTAZ transcription factors - Novel components of jasmonate signaling

TAZ (Transcriptional Adapter Zinc-binding) domains are primarily involved in protein-protein recognition.

The activation domains of more than 30 TF have been reported to bind to the TAZ domains, and each TAZ domain generally binds a different subset of transcription factors.

Jasmonate leads to repression of auxin regulated gene expression

Gene	Fold repressed
Auxin induced protein/small auxin up RNA (SAUR_B)	77.31
Auxin induced protein	61.14
Endoxyloglucan transferase	52.36
Ripening related protein	39.70
Cytochrome P450	38.25
Senescence associated protein	36.12
Peroxidase	34.42
Invertase	33.00
Rhamnosyltransferase	32.15
Unknown	29.56
Pectate lyase	28.75
Stigma-specific Stig1	26.85
Myosin II heavy chain	25.50
Expansin	24.84
Accellerated Cell Death-like	24.36
Cyclin	24.31
Proline rich protein	24.19
Maturation polypeptide	24.19
Pectinesterase inhibitor	23.58
LRR receptor-like kinase	18.73
Receptor protein kinase	18.38
Homeodomain-leucine zipper protein	16.92
Protein kinase	16.87
AUX1-like permease	16.07
Auxin efflux carrier	14.61
TCP14	14.15
AS2 81	12.85
MYB-related 26	12.09
Auxin transporter PIN1-like	9.80
ABI19	9.06
R gene like	8.84
R gene like	8.83
Homeodomain35	8.55
Auxin transporter	8.12

Molecular mechanism of jasmonate-regulated NtPMT1a gene transcription

The novel tripartite "GAG motif" in the NtPMT1a gene mediates MeJA responsiveness

Bokowiec et al (2010) Manuscript in preparation

The GAG motif differentiates between MeJA and wound inducible signaling in transgenic plants

Bokowiec et al (2010) Manuscript in preparation

Identification of NtERF TFs that bind the GCC-like box in the NtPMT1a GAG motif

IV

ERF 47

217

175

47 36

117

186

183 144

201

1 51

147

EREBP3

Group IX of the NtERF TF family contains multiple early and late MeJA induced members

VIII

74 182 183

205 227 EREBP6¹⁵⁸

173

131

220

VI

156 CEF1 / 191 185 152

142 46 42

105

174

211 ERF23

18

138 79 173 176 75

166

¹⁹⁸ EREBP

57 2 63

ACRET

25XP1

(34)93

180

214 150 ER

122 22

29 Z ORCI

IX

103 (146 Jap1 66 127) FREBP 110 (146 Jap1 66 FREBP 110

184

192

VII

Yeast two hybrid screens demonstrate NtERFs can specifically bind the GCC-box in the GAG motif

Bokowiec et al (2010) Manuscript in preparation

110 (3.3 t 24 Hours)

9 51(230 : 24 Hours)

- 0 17 (6.4 ± 24 Hours) - 0 168 (3.3 ± 24 Hours)

19.9

- 16 (65 : 24 Hours)

ORC1 (43.5 ± 24 Hours) 25 (133 ± 24 Hours) 3 115 (3.6 ± 24 Hours)

210 (17 1 : 24 Hours)

130

Late Maximum

0 10 4 (58 : 24 Hours)

NtERF TFs differ in their ability to bind the GCC-like box in the NtPMT1a GAG motif

ORC1 (NtERF221) and JAP1 were previously shown to upregulate nicotine formation in transient expression assays in tobacco protoplasts presumably by activating transcription of the *N. sylvestris NsPMT2* promoter (De Sutter et al., 2005).

2010_TSRC02_Timko.pdf

NtJAP1, NtORC1 and NtERF2 bind the MeJA inducible NtQPT2/RD2 promoter but not in the GAG motif

1 ctcgaggate taaattgtga gtteaatete tteeetattg gattgattat eetttettt etteeaattt gtgtttettt ttgeetaatt tattgtgtta teeeettat eetatttgt ttetttaett 131 atttattige tietatgiet tigtacaaag atttaaacte tatggeacat attttaaagt tigtagaaaa taaattettt caagattgat gaaagaactt titaattigta gatatttegt agattitatt 261 ctcttactac caatataacg cttgaattga cgaaaattg tgtccaaata tctagcaaaa aggtatccaa tgaaaatata tcatatgtga tcttcaaatc ttgtgtctta tgcaagattg atactttgtt 391 caatggaaga gattgtgtgc atattttaa aattttatt agtaataaag attctatata gctgttatag agggataatt ttacaaagaa cactataaat atgattgttg ttgttagggt gtcaatggtt 651 ggttaatttt catttttttt taaatgtcat taaaattcac tagtaaaaat agaatgcaat aacatacgtt cttttatagg acttagcaaa agctctctag acatttttac tgtttaaagg ataatgaatt 781 aaaaaacatg aaagatggct agagtataga tacacaacta ttcgacagca acgtaaaaga aaccaagtaa aagcaaagaa aatataaatc acacgagtgg aaagatatta accaagttgg gattcaagaa -1000 911 taaagtotat attaaatatt caaaaagata aatttaaata atatgaaagg aaacatatto aatacattgt agtttgotac toataatogo tagaataott tgtgoottgo taataaagat acttgaaata 1041 gettagetta aatatasata geataataga tittaggaat tagtattitg agtitaatta ettattgaet tgtaacagit titataatte caaggeeeat gaaasatta atgettiatt agtittaaae 1171 ttactatata aatttttcat atgtaaaatt taatcggtat agttcgatat tttttcaatt tattttata aaataaaaaa cttaccctaa ttatcggtac agttatagat ttatataaaa actaccggt cttcagaaga aacctaaaaa tcggttcggt gcggacggtt cgatcggttt agtcgatttt caaatattca ttgacactcc tagttgttgt tataggtaaa aagcagttac agagaggtaa aatataactt 1301 Deletion shows important for root specific expression >>.....> W Box MYB W BoxbZIP 1431 aaaaaatcag ttctaaggaa aaattgactt ttatagtaaa tgactgttat ataaggatgt tgttacagag aggtatgagt gtagttggta aattatgttc ttgacggtgt atgtcacata ttatttatta >.....>> Deletion shows important for root specific expression -390 **h7IP W Box** MYB MVB 1561 aaactagaaa aaacagegte aaaactagea aaaateeaac ggacaaaaaa ateggetgaa titgattigg ticeaacatt taaaaaagti teagtgagaa agaateggtg aetgtigatg atataaacaa DHLH W Box MYB MYB MYB 1691 agggcacatt ggtcaataac cataaaaaat tatatgacag ctacagttgg tagcatgtgc tcagctattg aacaaatcta aagaaggtac atctgtaacc ggaacaccac ttaaatgact aaattaccct 1821 catcagaaag cagatggagt getacaaata acacactatt caacaaccat aaataaaacg tgttcageta ctaaaacaaa tataaataaa tetatgtttg taagcactee agecatgtta atggagtget TATA Box >>....>>

H			2010_TSRC02_Timko.pdf
_TSRC02_Timko.pd			0
0_TSRC02_Timko.pd			Ξ
10_TSRC02_Timko.pd			ò
10_TSRC02_Timko.pd			Ó
10_TSRC02_Timko.pd			Ó
0_TSRC02_Timko.pd			5
0_TSRC02_Timko.pd			~
L_TSRC02_Timko.pd			0
TSR C02Timko.pd			
TSR C02_Timko.pd			- ' I
SR C02_Timko.pd			
sR C02_Timko.pd			U)
3C02_Timko.pd			5
C02_Timko.pd			0Y
:02_Timko.pd			\circ
)2Timko.pd			2
2_Timko.pd			~
_Timko.pd			
Timko.pd(
mko.pdf			Ē
nko.pdt			
ko.pdi			-
p.c			Ň
. pdi			0
bd			<u>-</u>
5			X
			5

Mutations in NtERF2 and NtERF5 decrease alkaloid content in tobacco plants

Gene target	Mutation Nucleotide – AA	Nicotine	Nomicotine	Myosmine	Anabasine	Anatabine	Total alkaloids	% Conversion	% Anatabine
WT T34		1.63	0.0513	0.00137	0.010800	0.074	1.768	3.15	4.20
NtERF5	GGT > GAT G > D	0.83	0.0137	0.00128	0.0039	0.041	0.89	1.62	4.67
NtERF5	AGA>AAA R>K	0.857	0.0182	0.00125	0.0045	0.026	0.91	2.08	2.87
NtERF5	CCA >TCA P > S	0.903	0.0218	0.00131	0.0069	0.089	1.02	2.36	8.79
NtERF5	GAG > AAG E > K	0.94	0.0390	0.00130	0.0071	0.040	1.03	3.97	3.88
NtERF2	GCT>GTT A>V	0.21	0.0352	0.00135	0.0041	0.008	0.26	14.53	3.238
NtERF2	ACC > ATC T > I	0.607	0.0145	0.0013	0.0039	0.022	0.65	2.33	3.47
NtERF2	ATA/GTA I>V	0.714	0.023	0.00126	0.0039	0.036	0.78	3.12	4.63
NtERF2	AAC>A-C Gap	0.994	0.0623	0.00131	0.0079	0.056	1.12	5.90	5.06
NtERF2	GAG>GCG E>A	1.12	0.0370	0.00137	0.0042	0.044	1.21	3.20	3.67
NtERF2	TGG > TGA W / stop.	1.35	0.262	0.00293	0.0063	0.065	1.69	16.25	3.87

Represent new targets for manipulation of alkaloid content

Bokowiec MT, Kudithipudi C, Hayes A, Timko MT (2010) Manuscript in preparation

Members of Subgroup N of the NtbHLH TF family are MeJA inducible and bHLH207 appear to be the closest homolog of the Arabidopsis jasmonate response regulator AtMYC2.

Zhang H, et al. (2010) In preparation

Two expressed protein variants of bHLH207 exist in tobacco, designated NtMYC2a and NtMYC2b

NtMYC2a / NtMYC2b specifically binds the G-box in the GAG motif.

B

AT-rich GCC-box

Overexpressed NtMYC2a / NtMYC2b are capable of transactivating pGAG-GUS transgene expression only in the presence of added MeJA

A functional G-box in the GAG motif is required

The JAZ family of repressors is the missing link in jasmonate signaling

In vitro and in vivo interaction of NtMYC2, NtJAZ1, and NtERF2

GAG GAG GAG gAG GAg

Current Model for JA inducible NtPMT gene expression

The JAR1 conjugating enzyme forms Jasmonoyl-isoleucine (JA-Ile) in the cytosol.JA-Ile promotes SCF^{COI1} interaction with JAZ transcriptional repressors, leading to their ubiquitination and degradation by the 26S proteasome. The MYC2 transcription factor is then free to regulate the expression of genes involved in JA response either alone or in combination with other TFs.

+JA 0 6h 24h 0 6h 24h (line18) NtCOI1 NtCOI1 NtPMT

If COI1 is not available gene expression leading to alkaloid formation can not be activated

LI (nic2) mutants of Burley 21 are MeJA insensitive - Is this NtCOI1?

Our Research Goals:

Broadly understand the integrated circuitry that regulates the formation and accumulation of nicotine and related alkaloids in plant cells

- what genes are responsible for the biosynthesis of the major and minor alkaloid of tobacco
- how are these genes regulated [transcriptional machinery regulatory elements and protein factors]
- what cellular processes control metabolite flux and alkaloid accumulation

Use our acquired knowledge to selectively alter leaf chemistry and composition to reduce levels of "harm components" in tobacco products

- major (nicotine, nornicotine) / minor (anatabine, anabasine, anatalline, myosmine) alkaloids
- tobacco specific nitrosamine (TSNA) levels in "cured" and "fermented" tobacco products
- various N-rich substrates, simple and complex sugars (lignins), etc that form particulates and volatiles.

Evaluate whether these "Harm Reduced" tobacco products demonstrate a differential ability to influence (potentiate, activate, repress) human cellular process.

- establish in vitro human lung and oral epithelial cell culture exposure systems
- use transcriptomic, proteomic, and metabolomic approaches to describe the effects of whole smoke, smoke condensate (CS), and tobacco soluble extracts (SE) on cellular function

Mucociliar differentiation of Human Bronchial Epithelial (NHBE) cells for smoke exposure studies

Semithin (0.25 um) plastic embedding of human lung epithelial cells in culture. Photograph by T. Kotova & Dr. MS Forbes (Pediatrics)

Immunodetection of MUC5AC and β -tubulin secreted by human bronchial epithelial cells during lung cell differentiation (left) and acquisition of Trans Epithelial Electrical Resistance (TEER) during differentiation.

Leica MLL (confocal/spectrum) 25x

Goblet cells (microvilli) - ~7.0% Alexa 658 (red) Mouse anti MUC5AC **Ciliated cells** - ~21.1% Alexa 488 (green) Rabbit anti β-tubulin **Columnar epithelium (basal cells)** - DAPI stained nuclei (blue)

British American Tobacco UK and Curbridge Engineering, Ltd. Southhampton, UK Photo from Maunders et al. (2007) AJP Lung Cell Mol Physiol 292: L1248–L1256

Validation of "harm reduction" in selectively modified tobacco products

Transcriptomic analysis of human bronchial epithelial cells (NHBE) to exposure from smoke from tobacco smoke (Kentucky 1R5F). Using gRT-PCR human gene expression arrays and cytokine/inflammatory response assays.

Examination of changes in expression for genes involved in oxidative metabolism, response to stimuli or cell cycle regulation and the response to DNA damage. Controls shown are heat shock protein 70 kDa (HSP70B), cytochrome *P*-450 CYP1A1 (involved in bioactivation of polyaromatic hydrocarbons)

Future plans

Commercial vs "harm reduced"

Comparison of cigarettes made from wild type leaf and leaf from selectively modified tobacco (e.g., low nicotine/ nornicotine/ anatabine; NtERF2/5 mutant lines, NtERF, NtMYC2, NtCOI1 knockdown lines, etc) using *in vitro* cellular assays

Maunders et al. (2007) AJP Lung Cell Mol Physiol 292: L1248–L1256

Conclusions

Have begun to unravel the integrated circuitry that regulates the formation and accumulation of nicotine and related alkaloids in plant cells

Identified both key regulatory elements in the promoters of genes controlling key biosynthetic enzymes as well as an array of TFs that work through these elements.

Identified multiple new targets for potential manipulation that could affect cellular processes controling formation of both major (nicotine, nornicotine) / minor (anatabine, anabasine, anatalline, myosmine) alkaloids

Recommendation

Careful evaluation of the effects of selectively altering leaf chemistry and composition are needed to determine if these products provide "harm reduction" as evidenced by their measured effects on human cellular process

Marta Bokowiec, PhD candidate Hongbo Zhang, PhD Shengchen Han, PhD

Tatiana Kotova, Tech Rohan Rajapaske, DVM Michael J. Wolkowicz, PhD Shuran Li

Jim Roberts UVA HSC Tom Laudeman UVA HSC

Undergraduate assistants: Gina Kim Cassie Campbell

Collaborators

Paul J. Rushton South Dakota State University John Finer Ohio State University Xianfeng Chen US DoD

Chengalrayan Kudithipudi Alec Hayes

PM USA, Altria Client Services PM USA, Altria Client Services

NtERFs

NtMYC2

NtJAZ/ZIM

Cell culture

Tobacco exposure

Biostatistician

Bioinformatics

Sanam Shahid

Annesha Basu

Suported by

Philip Morris, USA / Altria Client Services

UVA SOM Tobacco Research Program

