

The influence of carbon on selective removal of phenolic compounds

Jeremy K. Steach and Denise Fisher Jones
Eastman Chemical Company

Previous work:

- TSRC 2008 Watts, A. "The Influence of Water on the Selective Filtration of Phenol in Upstream versus Downstream Filter Segments"
- TSRC 2007 –Wilson, S. "Influence of Water on Selective Filtration"
- CORESTA 2006 Newbury, J. "The Effect of Alternative Smoking Regimes on the Yield and Selective Removal of Specific Smoke Components by Cellulose Acetate Filters"
- CORESTA 2006 Renfro, L "The Effect of Filter Parameters on the Selective Removal of Some Phenolic Compounds by Cellulose Acetate Filters"
- TSRC 2004 Wilson, S. "Comparing the Selective Filtration Properties of Traditional Plasticizers"
- CORESTA 2003 Renfro, L "Estimating the Selective Removal of Specific Smoke Components by Cellulose Acetate Filters"
- TSRC 2001 Wilson, S "Smoke Composition Changes Resulting from Filter Ventilation"
- TSRC 2000 Wilson, S "The Influence of Plasticizer on Cigarette Filter Performance"

Objective

- Determine the effect of carbon on the selective removal of phenolic compounds in dalmation and cavity filters
- Determine the influence of triacetin on selective removal for carbon filters
- Characterize aging effects of carbon in cigarette filters on selective removal

TSRC2010(64) - Document not peer-reviewed by CORESTA

Filter rod properties

■ Tow Item: 2.7/Y/35

■ Target PD: 350 mm H₂O

Rod Length: 108 mm

Circumference: 24.45 mm

Plugwrap: Nonporous

Rods were prepared on a Mollins plugmaker with an Eastman Mini tow processing unit.

Filter types analyzed

Filter Type	Carbon (mg)	Triacetin (% wt)
Tow	0	0
Tow	0	7
Carbon on Tow (Dalmation)	~ 60	0
Carbon on Tow (Dalmation)	~ 60	3
Carbon on Tow (Dalmation)	~ 60	7
Carbon Cavity	~ 60	7

Cigarette construction

- All cigarettes were constructed using tobacco columns from commercially available full flavor cigarettes.
- The cigarettes were constructed by hand for each type on the same day due to the time study.
- Constructed cigarettes were stored at 60% humidity and 72°F.
- Cigarettes were glued 24 hours prior to smoking.
- Cavity filters were made by cutting the 7% PZ, no carbon filter tip into two pieces and using a plastic straw to create a cavity that was filled with 60 mg carbon.

Smoking conditions

- Filtrona 8-port smoking machine
- 35 mL puff volume, 2 second puffs every 60 seconds, and 2 clearing puffs
- Cigarettes were selected to have an average filter tip pressure drop of 70 mm H₂0 per port
- 2 cigarettes were smoked for each of the 8 ports per filter type
- HPLC was used to determine selective removal of phenolic compounds

Typical chromatogram

Removal efficiency calculation

$$RE = \frac{X_A - X_D}{X_A}$$

RE = Removal efficiency

 X_A = Available delivery when no filter is present X_D = Delivery on Cambridge pad when a filter is present

TSRC2010(64) - Document not peer-reviewed by CORESTA

Catechol removal efficiency

Catechol removal efficiency

Catechol removal efficiency

Phenol removal efficiency

Phenol removal efficiency

Phenol removal efficiency

Phenol removal efficiency vs. triacetin delivery

Removal efficiency comparison

Conclusions

- Carbon does not appear to increase the selective removal of phenolic compounds
- Triacetin does not enhance selective removal of phenolic compounds for dalmation filters
- Cavity filters removal efficiency decreases over time period studied
- Dalmation and cavity filters have considerably different removal efficiencies for phenolic compounds

TSRC2010(64) - Document not peer-reviewed by CORESTA

Acknowledgments

- Denise Fisher Jones
- Vicky Williams
- Larry Renfro
- Steve Wilson
- Greg Rasmussen
- Mark Williams
- Stephanie Monroe
- Kathy Shelton
- David Douthat

Thank You Questions?

