DELIVERIES OF SMOKE CONSTITUENTS FROM CHARCOAL FILTER CIGARETTES WHEN SMOKED WITH VARYING INTENSITIES

Peter JOZA, William Rickert, Wendy Wagstaff

64th Tobacco Science Research Conference October 3 -6, 2010 Hilton Head Island, South Carolina, USA

LABSTAT INTERNATIONAL ULC.
262 Manitou Drive

Kitchener, Ontario, Canada N2C 1L3

Phone: (519) 748-5409 Fax: (519) 748-1654

Objectives

- Evaluate the "effectiveness" of charcoal addition on the yields of Hoffman analytes when cigarettes are smoked under multiple regimes.
 - demonstrated by comparison of yields from charcoal filter cigarettes to non-charcoal filter cigarettes
- Identify factors or cigarette characteristics important in filter effectiveness for the brands selected in the study.

Study Design

- Products tested
 - Seven Canadian products with charcoal filters (CFC)
 - Three acetate filter cigarettes (CAC) including KR 3R4F
- Smoking Regimens

Condition	Puff Vol.	Interval	Duration	Vent Block	
	(mL)	(sec)	(sec)	(%)	
ASR-1	25	60 🛖	2	0	
ISO	35	60	2	0	
ASR-3	45	50	2	0	
ASR-4	45	30	2	0	
CDN Mod	55	30	2	100	
ASR-6	55	30	2	0	

TSRC2010(64) - Document not peer-reviewed by CORESTA

Smoke Collection and Analysis

TNCO + Filter Efficiency (T-115 + T-106)

Tar

- Nicotine
- •Carbon Monoxide
- •Filter Efficiency

Volatiles (Expanded) (T-116 + TMS-124)

- •1,3-Butadiene
- •Isoprene •Benzene
- Acrylonitrile
- •Toluene
- Vinyl Chloride
 Acetamide

Carbonyls (T-104)

- Formaldehyde
- Acetaldehyde
- Acetone

MFK

- Acrolein
- Propionaldehyde
- Crotonaldehyde
- Butyraldehyde

Hydrogen Cyanide (T-107)

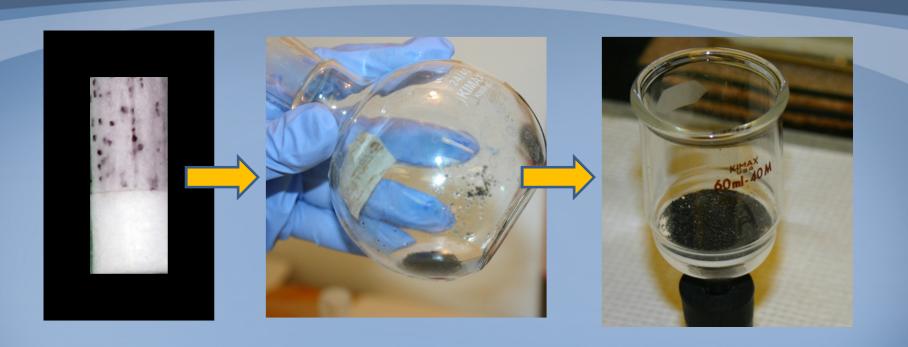
Hydrogen Cyanide

PQS (Semi-Volatiles) (T-112)

- Pyridine
- Quinoline
- Styrene

Free-Base Nicotine (TMS-138)

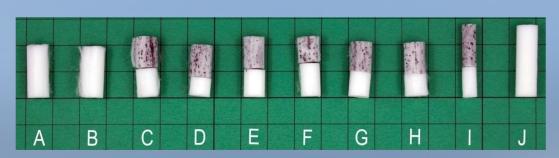
•Free-base Nicotine


Volatile Nitrosamines (TMS-125)

- •NDMA
 •NDEA
- •NEMA
- •NDBA
- NDPANPIP
- •NPYR

< LOQ

For each analysis: n = 7


Determination of Charcoal Content

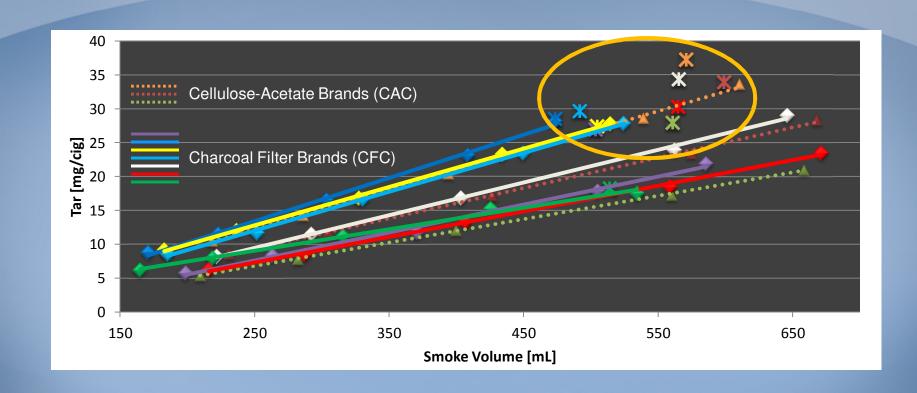
• 10 cellulose acetate filters containing carbon were dissolved in 100mL of dimethyl sulfoxide (DMSO) in order to separate the insoluble charcoal. The charcoal was recovered by filtration, washed with acetonitrile, dried and weighed.

Product Characterization

Product ID	Pressure Drop	Tip Ventilation	Paper Porosity	Charcoal in Filter	Diameter	Total Filter Length	Acetate Portion	Charcoal Portion	Charcoal Conc.
	(mmH_2O)	(%)	(mL/min/cm²)	(mg/filter)	(mm)	(mm)	(mm)	(mm)	(mg/mm ³)
Α	101	13	46	n/a	7.7	20	20	n/a	n/a
В	109	22	46	n/a	7.7	20	20	n/a	n/a
J	132	35	27	n/a	7.7	27	27	n/a	n/a
С	111	37	71	39	7.7	22	10.5	12.0	0.070
D	123	0	71	38	7.8	19	7.0	12.5	0.064
E	127	0	71	39	7.8	22	10.0	12.0	0.068
F	116	11	42	33	7.8	22	12.5	10.0	0.069
G	111	25	50	50	7.8	20	8.0	12.0	0.087
Н	109	34	83	39	7.8	20	8.0	12.0	0.067
I	167	41	52	17	5.4	27	12.0	15.0	0.051

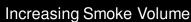
Presentation of Results

- Deliveries of Hoffmann analytes increased as the "smoking intensity" increased for both CFC and CAC.
 - the total volume of smoke (mL/cig) which passes through a cigarette from the time it is lit until it is extinguished


Condition	С	D	E	F	G	Н	I
ASR-1	199	171	183	186	222	216	165
ISO	263	223	236	251	292	287	219
ASR-3	371	304	327	330	403	406	315
ASR-4	505	409	434	449	562	558	425
CDN Mod	504	474	505	492	565	565	514
ASR-6	585	474	514	525	645	671	535

Example: Average Volume of Smoke (mL/cig) Taken for Tar Analysis

Presentation of Results


 Effect of smoking machine regime on analyte yield from the various charcoal brands can be illustrated using plots of analyte yield as a function of volume of smoke taken for analysis.

Filter <u>Effectiveness</u> in Relation to Smoking Regime

A comparison of the slopes of the lines (amount of constituent/unit volume)
 could be made in order to assess the effect of the filter.

Filter Effectiveness (continued) Nicotine [mg/cig] Hydrogen Cyanide [µg/cig] Pyridine [µg/cig] Formaldehyde [µg/cig] Benzene [µg/cig] CAC CFC

3.5

2.5

1.5

⁻150

_ 50

0.5 -100

Identification of Factors Important in Filter Effectiveness

Multiple Regression Model

$$y = \beta_0 + \beta_1 FT + \beta_2 CFW + \beta_3 CFL + \beta_4 CFC + \beta_5 TV + \beta_6 PP + \beta_7 PDVO$$

where:

y is the analyte yield per L smoke

FT is the vector of <u>filter types</u> where FT = 0 for non-charcoal and FT=1 for charcoal

CFW is the vector of weights of the charcoal in each filter (mg/filter)

CFL is the vector of <u>lengths of each charcoal filter portion</u> (mm/filter)

CFC is the vector of <u>concentrations of charcoal</u> in each filter (mg/mm³)

TV is the vector of percents (%) of tip ventilation

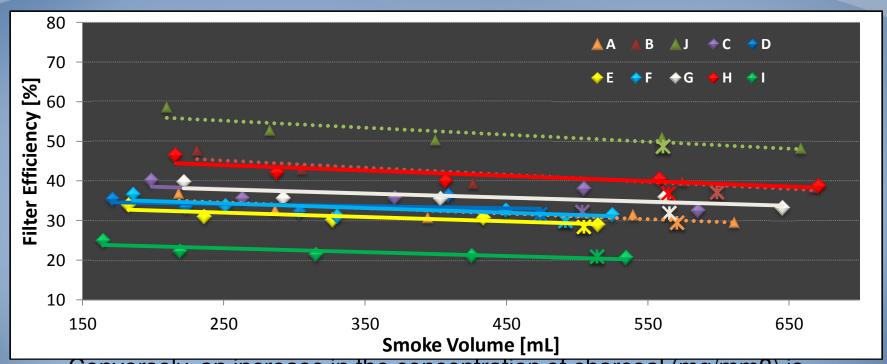
PP is the vector of <u>paper porosities</u> (mL/min/cm2)

PDVO is the vector of <u>pressure drop</u> in mm H₂O of the cigarettes without vent blocking.

TSRC2010(64) - Document not peer-reviewed by CORESTA

Identification of Factors Important in Filter Effectiveness

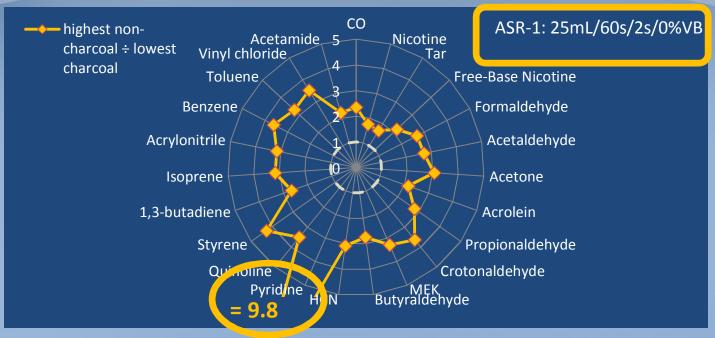
Charcoal Weight Charcoal Filter Concentration **Paper Porosity** Filter Type Charcoal Filter Length Tip Ventilation Pressure Drop β_0 β_6 ·PP Compound β_1 ·FT β_2 ·CFW β_3 ·CFL β_4 ·CFC $\beta_5 \cdot TV$ β_7 ·PDVO Pyridine 67.4 -1.78 -0.118 -0.048 Quinoline 3.25 0.896 0.041 -0.018 -0.248-0.014 0.008 Styrene 44.1 21.8 -2.73-0.107 -0.269 1,3 butadiene 170 -1.20 -1.92 -9.79 2.71 1083 -3.58 Isoprene 35.4 -0.631 -0.307 Acrylonitrile Benzene 157 -3.40-1.22 Toluene 275 -4.94-1.62 -0.754Vinyl Chloride 118 -1.23-1.020.368 Acetamide 32.4 -0.264-0.083


Multiple Regression Model Parameter Estimates

Summary – Filter Effectiveness

- For most of the volatiles examined, both charcoal filter length and tip ventilation are significant
- Increased filter length and increased tip ventilation are associated with a lower concentration (yield/litre)
- The very limited range covered by the variables suggests caution in interpreting the results. For example, 5 of the charcoal filter lengths were virtually identical. The fact that one brand had the longest filter and the lowest concentration may be responsible for much of the correlation.

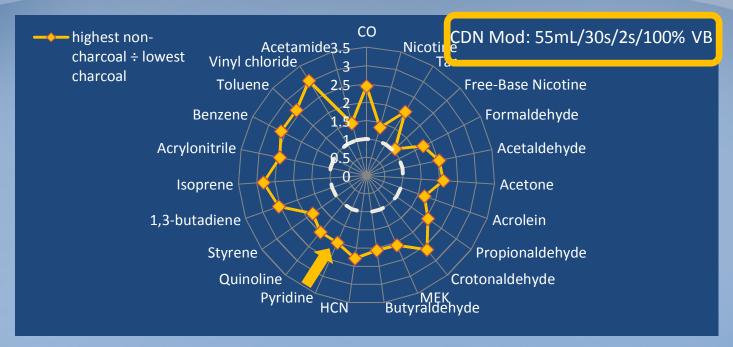
Effect of Charcoal on Filter Efficiency for Nicotine


Multiple Regression Model Parameter Estimates

•Conversely, an increase in the concentration of charcoal (mg/mm3) is correlated with a decrease in filter efficiency (negative co-efficient).

- Compare results of CFC to the non-charcoal filter cigarettes.
 - Demonstrate using most extreme yield differences
- Compare results between brands for each analyte under each alternative smoking regime (ASR).

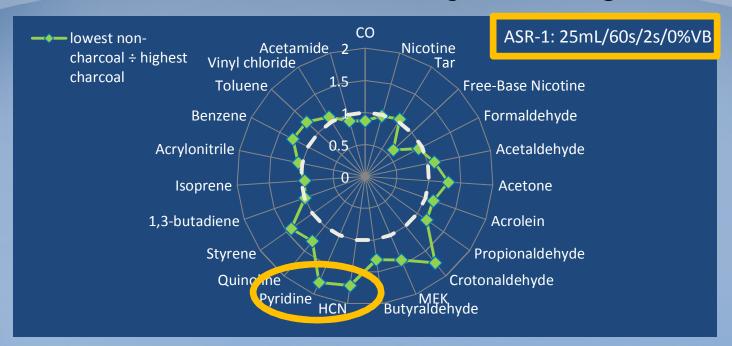
*Best Case Scenario - 'Light' Smoking


Worst cellulose-acetate brand

Best charcoal brand

^{*}Highest cellulose-acetate filter brand yields <u>divided</u> by lowest charcoal filter brand yields

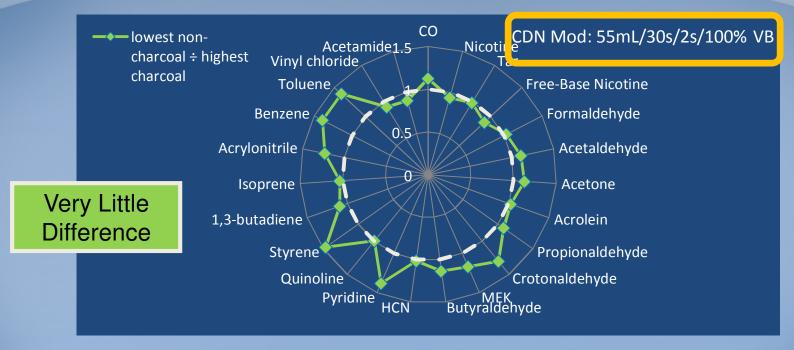
*Best Case Scenario - 'Extreme' Smoking


Worst cellulose-acetate brand

Best charcoal brand

*Highest cellulose-acetate filter brand yields divided by lowest charcoal filter brand yields

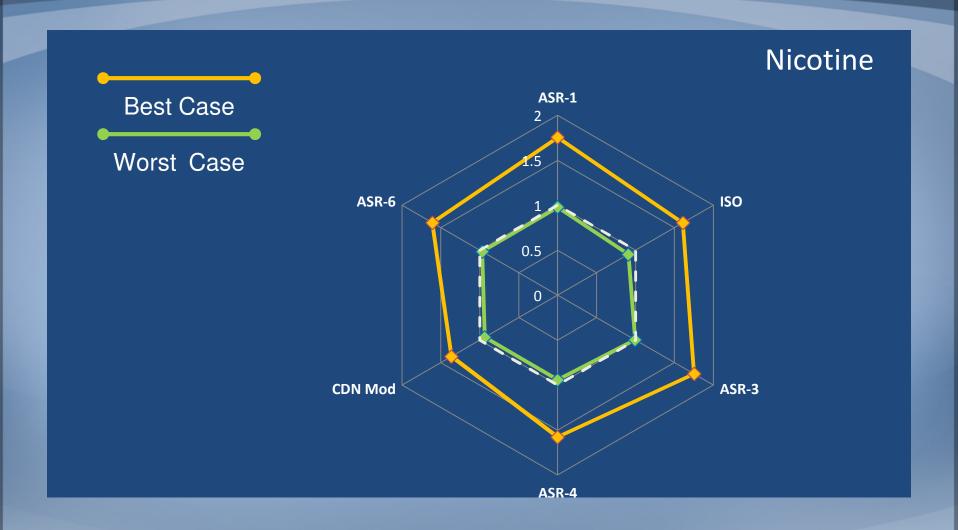
*Worst Case Scenario - 'Light' Smoking

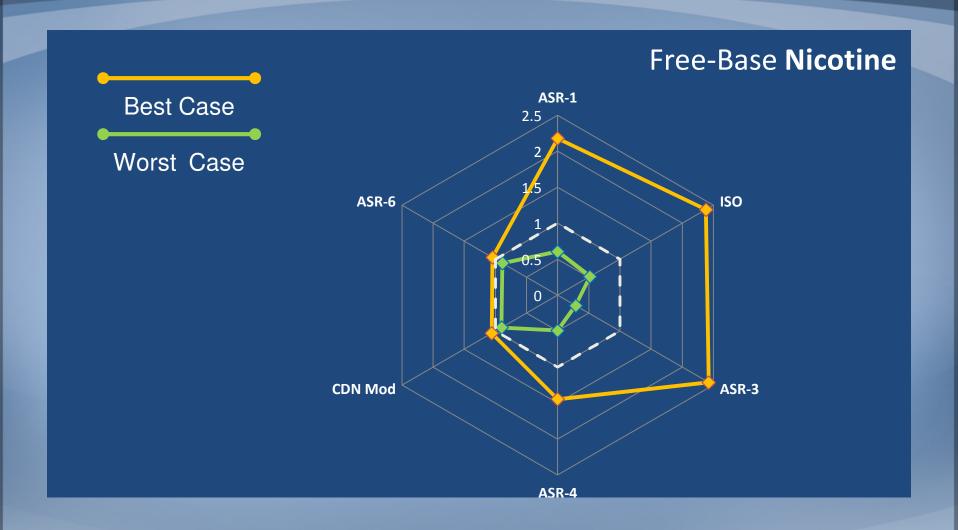

Best cellulose-acetate brand

Worst charcoal brand

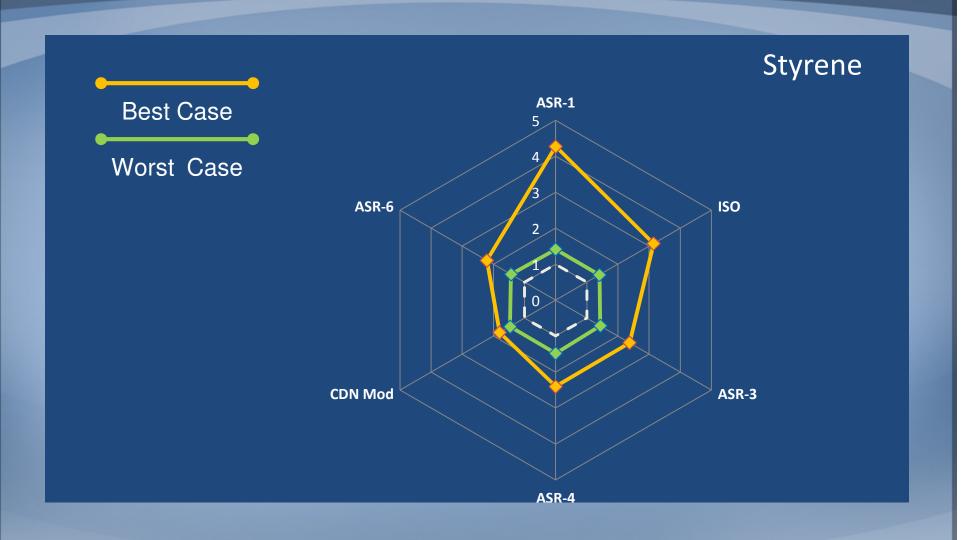
*Lowest cellulose-acetate filter brand yields <u>divided</u> by Highest charcoal filter brand yields

*Worst Case Scenario – 'Extreme' Smoking



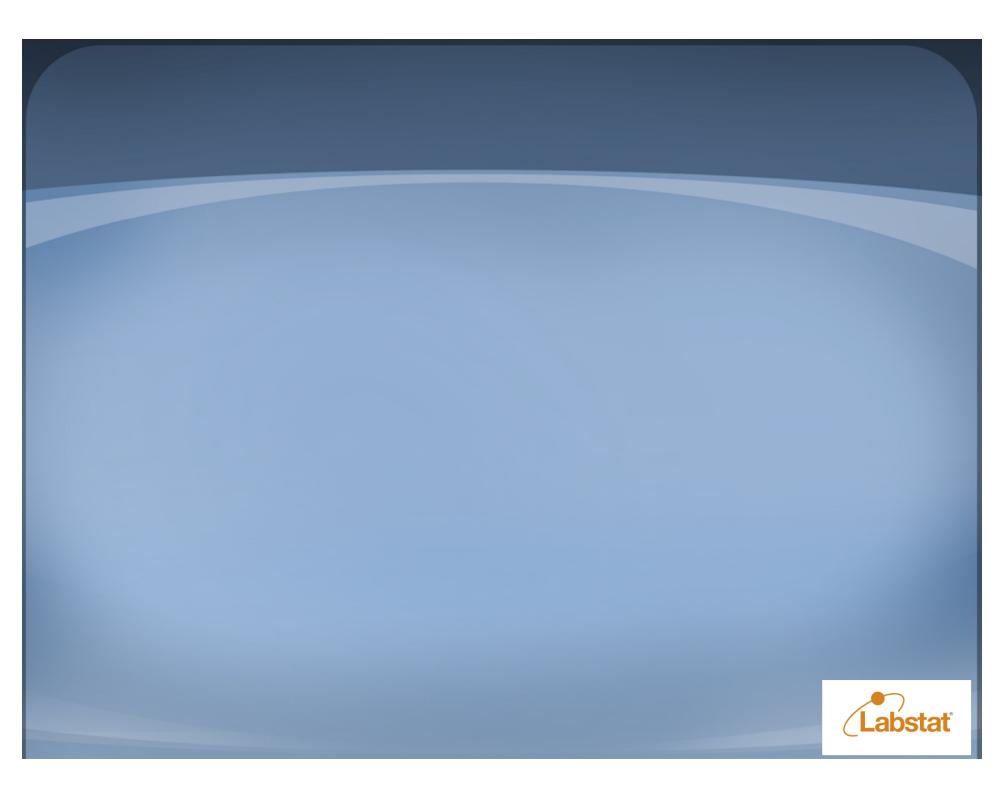

Best cellulose-acetate brand

Worst charcoal brand



*Lowest cellulose-acetate filter brand yields divided by Highest charcoal filter brand yields

Conclusions


- In the 'best case' scenario, the ratio of the highest yield cellulose acetate filter brand to the lowest-yield charcoal filter brand is greater than unity (1) for the majority of analytes under all smoking regimes.
- The 'worst case' scenarios, with the ratio of the lowest-yield cellulose acetate filter brand to the highest-yield charcoal filter brand, indicate that the majority of analytes give results fairly close to unity (1) under all smoking regimes.
- For the majority of analytes, cigarettes with charcoal filters have, at best, lower analyte yields relative to cigarettes with regular cellulose acetate filters.
- At worst, cigarettes with charcoal filters appear to have similar analyte yields to those with regular filters.

Acknowledgement

Sponsored by Health Canada

(Contract No.: H4133-060012/001/SS, Task #11)

