Development of an online TSWV and vector management decision aid for tobacco

Hannah J. Burrack¹, Clyde E. Sorenson¹, Amanda Beaudoin¹, Mark Brooks², Rebecca Cumbie², and George Kennedy¹

¹NC State Department of Entomology

²NC State Climate Office

Acknowledgements

- Shannon Morsello
- Cooperators (2002-2009)
 - ♦ On farm research
 - Gary Amerson, Warren Sloan, Joseph Stilley, Phillip Howard
 - Agent cooperators
 - Curtis Fountain, Mike Carroll, Jacob Morgan, Tray Bridgers
 - Francis Reay-Jones, Clemson University
 - Growers who allowed on farm trapping
 - Agents who maintained trap locations

- † 2010 Cooperators
 - ₱ J. Michael Moore, UGA
 - * Robert McPherson, UGA
 - Francis Reay-Jones, Clemson
- Funding sources
 - * Altria Client Services
 - Phillip Morris International
 - * Tobacco Education and Research Council
 - NC Tobacco Research Commission
 - NC Tobacco Foundation

ewed

Outline

- Brief model overview
- 2009 predictions and applications
 - Expansion to SC
- Website functions
- ↑ 2010 beta testing and validation
- Future research needs
 - * Fall biofix
 - Expansion to GA

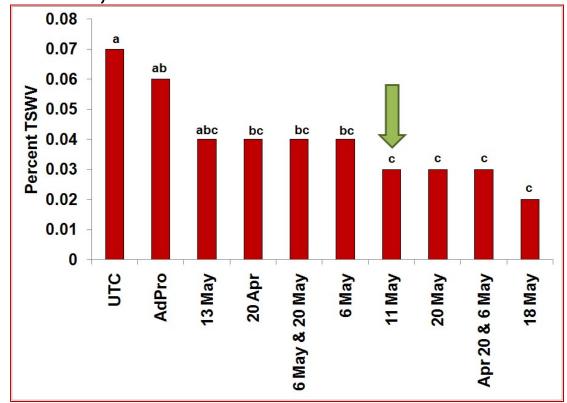
Model overview

- Degree day model
 - Based entirely on weather data
 - Temperature & Precipitation
- * Relies on historic & forecast data
- Most reliable within 14 days of transplant
 - Closer is better

Model overview

- Fixed fall biofix November 1
- Rainfall effect varies depending upon timing (RI combines intensity & duration)

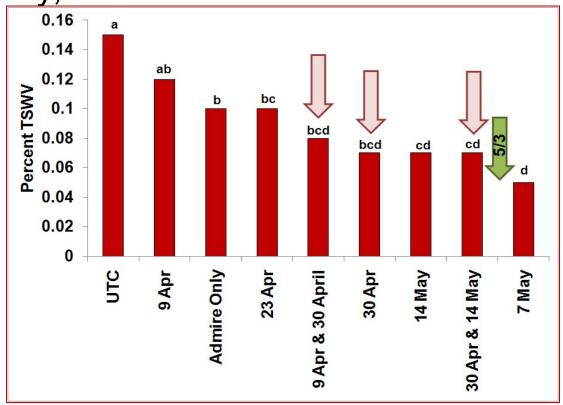
Prediction Interval	RI Period	RI Effect
1-15 April	16-31 March	-
16-30 April	16-31 March	-
1-15 May	16-31 March	-
	16-31 April	-
16-31 May	16-31 April	-
	1-15 May	+
	16-31 May	+


Model overview -- A look inside

http://hatteras.meas.ncsu.edu/RebeccaC/t hripsPrint.php?type=test

Model validation for 2009

- Validation expanded to SC
 - Woodard, SC



Model validation for 2009

Validation expanded to SC

Baxley, SC

Website functions

- Historical search can be used year round
- Current year search can be used beginning April of current year
- * Output:
- Dates of predicted thrips flight
- Relative magnitude of flights
- Recommendation text (current year only)
- http://hatteras.meas.ncsu.edu/RebeccaC/t
 - nripsPrint.php?type=calculation

Website functions

- Recommendations based on:
- + Historic incidence
- Thrips flight timing

To be added

Virus risk assessment

Tobacco type

Treatment tools (anticipated reductions)

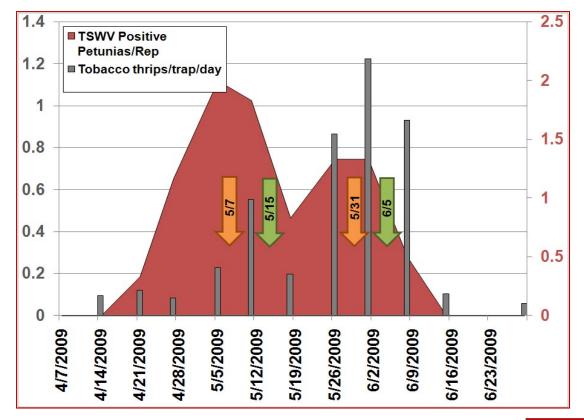
Highly customizable

http://hatteras.meas.ncsu.edu/RebeccaC/t hripsPrint.php?type=data

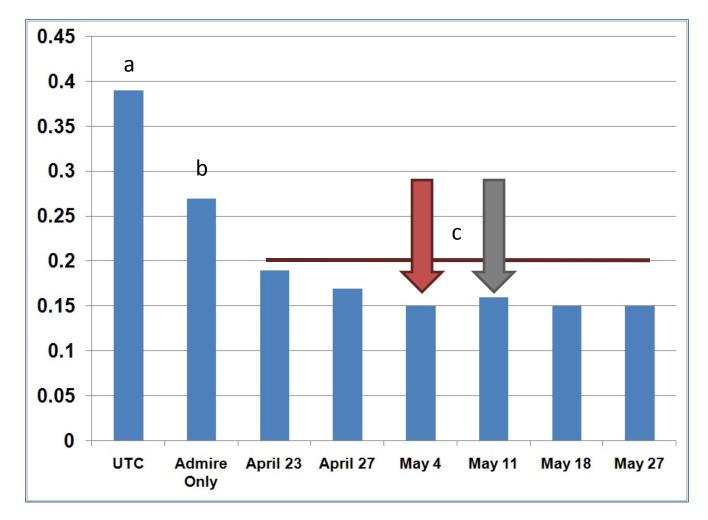
Website uses

- * Example recommendations:
- Scenario 1: A grower in an area with high historical TSWV wants to know if a greenhouse treatment or a field treatment is most appropriate
- Transplant date: 4/24/2010
- * Anticipated 3rd generation flight date: 5/19/2010

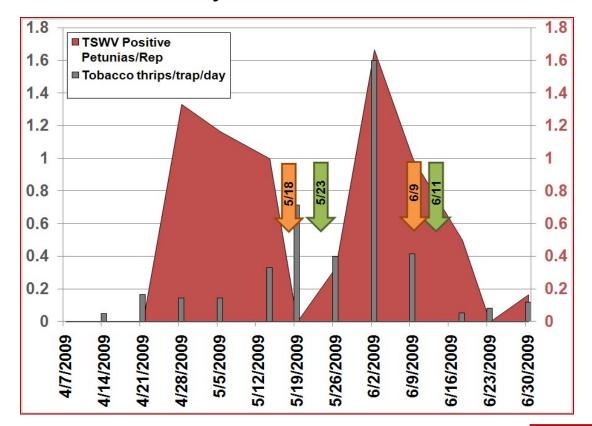
Website uses

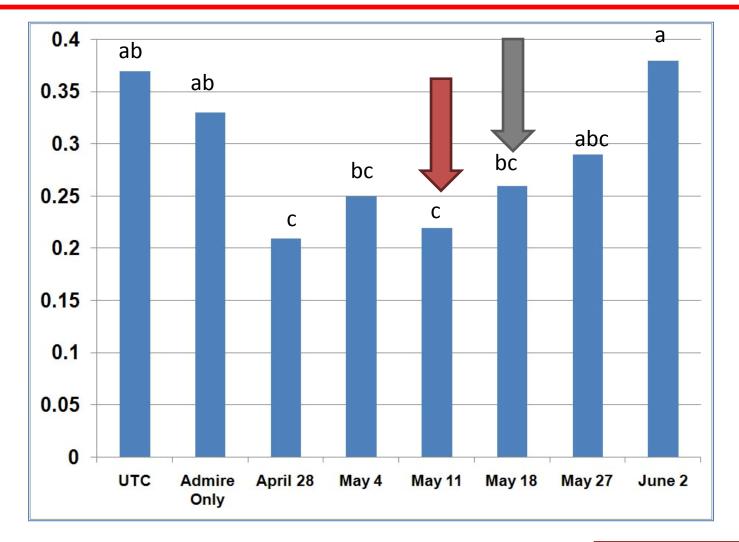

- * Example recommendations:
- Scenario 1:

Because your anticipated transplant date is **25** days before the anticipated **3rd** generation tobacco thrips flight, it may be necessary to preventatively treat for TSWV. A tray treatment of imidacloprid in combination with a foliar application of Actigard in the field will result in the greatest virus reduction. This Actigard application should be made 3 to 5 days before the predicted thrips flight on **May 19**.


Future Research – Dynamic Biofix

In order for the model to be applicable to climatically different areas, a dynamic fall biofix is needed


Future Research – Dynamic Biofix


Future Research – Dynamic Biofix

In order for the model to be applicable to climatically different areas, a dynamic fall biofix is needed

Future Research – Dynamic Biofix

Summary

- Website design and function (essentially) complete
- Agent and grower beta testing to commence in 2010
- Validation and expansion to other SE tobacco states with significant TSWV
- Model refinement Fall biofix, additional crops

