
The Effect of Growth Regulators on the Mechanical Transmission of Bacterial Wilt

Paul Peterson and Bruce Fortnum

Clemson University, Department of Entomology, Soils and Plant Sciences, Pee Dee Research and Education Center, Florence, SC 29506, U.S.A.

Bacterial Wilt in South Carolina

- Bacterial wilt, caused by *Ralstonia solanacearum*, is the major tobacco disease problem in South Carolina.
- Bacterial wilt is also a regional issue – occurs from Virginia to Florida.
- Losses are focused in North & South Carolina because temperature limits geographical range north & south of these states.

Mechanization & the Spread/Severity of Bacterial Wilt in SC

Background

- Mechanical transmission of *R. solanacearum* during flower and leaf removal also coincides with the time when maleic hydrazide (MH) is applied to arrest axillary shoot growth (suckers).
- Previous observations suggested MH application may suppress mechanical transmission of bacterial wilt during mechanical topping and leaf removal.
- Growth regulators have been shown to effect disease development.

Previous studies with MH

- Evaluated the effect of MH application on *R.* solanacearum establishment and disease development following mechanical transmission of the bacterium using:
 - Growth Chambers
 - Greenhouse

• MH suppresses the severity of bacterial wilt.

• Disease suppression is strongly linked to MH application timing.

Previous Results with MH

Inoc. with *R. solanacearum (*inoculum) Early MH + inoculum MH + inoculum Late MH + inoculum

Current Objective

To compare the effect of MH against other growth regulators on *R. solanacearum* establishment and disease development following mechanical transmission of the bacterium.

Materials and Methods

- Experiments were conducted at Clemson's Research and Education Center in Florence, SC.
- Seedlings of K346 were grown under standard agronomic practices for South Carolina (traditional float bays).
- Plants were transferred to 15 cm diameter pots and grown in a greenhouse on a 12-hour photoperiod – artificial light supplement until they reached 30 cm tall.
- Plants were transferred to controlled environment chambers at 30°C, 68% RH on a 12-hour photoperiod.
- Experimental design was a randomized complete block with three replications repeated in 3 different runs.

Inoculation

- An isolate of *R. solanacearum* was grown and suspended in deionized water at Optical Density₆₀₀= 0.2 = 10⁸ cells/ml and used as a stock culture.
- The 10⁸ suspension was diluted to 2x10⁶ cells/ml for inoculation.
- Growth regulator treatments were applied <u>4 days prior</u> to inoculation with *R. solanacearum*
- *R. solanacearum* inoculation simulated mechanical flower removal.
- Mechanical topping was simulated by removing the apical bud with a scalpel and 100 μl of inoculum pipetted on to the cut stem.

Treatments

Treatment	Application rates
Flumetralin (Prime +) + inoculation	5 ml/500 ml or 2 qt/A
Naphthalene acetic acid (NAA; Sucker Stopper) + inoculation	5 ml/500
Indole-3-butyric acid (IBA) + inoculation	100 ppm
Indole-3-acetic acid (IAA) + inoculation	100 ppm
Maleic Hydrazide (Royal MH 30) + inoculation	15 ml/500 ml or 1.5 gal/A
Inoculated untreated	
Non inoculated, untreated	e Provinsi P

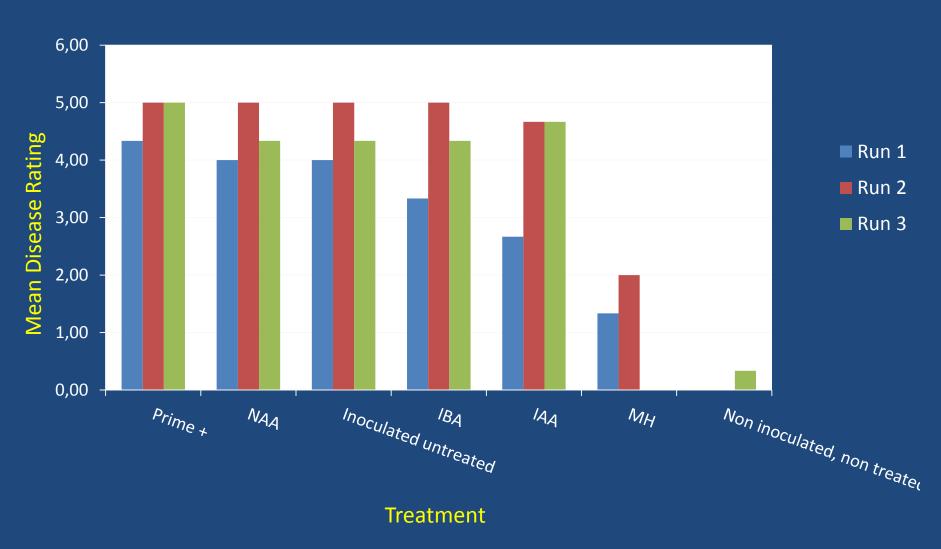
******Each treatment was paired with a treated/non-inoculated control.

Disease Assessment

- *R. solanacearum* was positively confirmed using immunological testing strips (Agdia Pathoscreen Kit).
- Plants were assessed for disease severity every 3 to 5 days starting 7 days post-inoculation and rated on a 0 to 5 scale (0 = no visible symptoms, 5 = complete collapse of tissue).
- Stem necrosis was recorded on a 0 to 5 scale at final disease assessment date.
- All data were subjected to ANOVA using JMP software (SAS).

Growth Regulator Trial Results (Run 1)

Treatment	Final Stem Necrosis	
	Level	Least Sq Mean
Prime + + inoculation	A	4.33
NAA + inoculation	А	4.00
Inoculated, untreated	А	4.00
IBA + inoculation	AB	3.33
IAA + inoculated	AB	2.67
MH + inoculation	BC	1.33
Non-inoculated, untreated	С	0.00


Growth Regulator Trial Results (Run 2)

Treatment	Final Stem Necrosis	
	Level	Least Sq Mean
Prime + + inoculation	А	5.00
Inoculated, untreated	А	5.00
IBA + inoculation	А	5.00
IAA + inoculated	А	5.00
NAA + inoculation	А	4.67
MH + inoculation	В	2.00
Non-inoculated, untreated	С	0.00

Growth Regulator Trial Results (Run 3)

Treatment	Final Stem Necrosis	
	Level	Least Sq Mean
Prime + + inoculation	А	5.00
Inoculated, untreated	А	4.33
IBA + inoculation	А	4.33
NAA + inoculation	А	4.33
IAA + inoculated	А	4.67
MH + inoculation	В	0.33
Non-inoculated, untreated	В	0.00

Growth Regulator Trial Results Combined – Final Stem Necrosis

Summary

- Maleic Hydrazide (MH) significantly suppressed the severity of bacterial wilt.
- Disease severity in the Flumetralin (Prime +) treatment was not significantly different from the inoculated untreated control.
- Application of IAA and IBA showed some reduction in disease severity but levels were not significantly different from untreated control.