

CORESTA Joint Study Groups Meeting Smoke Science / Product Technology 2011 - Graz, Austria

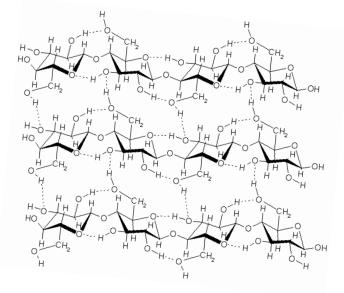
Effect of sugar content on acetaldehyde yield in cigarette smoke

Xavier Cahours¹, Thomas Verron¹, Steve Purkis²

¹SEITA, Imperial Tobacco Group - 4, rue André Dessaux, 45404 Fleury-les-Aubrais, France

²Imperial Tobacco Limited - PO Box 244, Southville, Bristol BS99 7UJ, U.K.

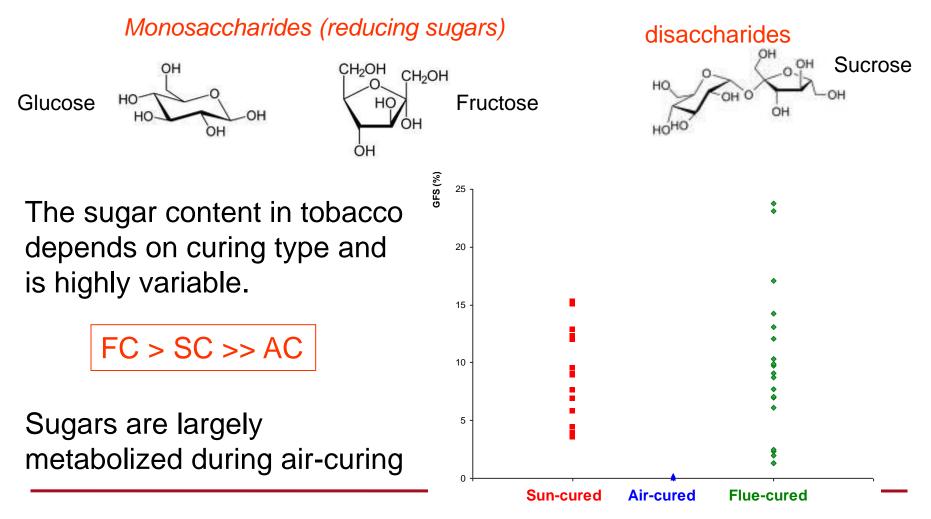
Acetaldehyde and cigarette smoke



⇒Acetaldehyde in mainstream smoke is the major component in the vapour phase after oxygen, nitrogen , water, carbon monoxide and carbon dioxide

- Acetaldehyde has been classified in isolation as an animal carcinogen¹, and may be cytotoxic² or genotoxic²
- Acetaldehyde has been suggested to play a role in human smoking behavior³
 - Interaction with nicotine in the central nervous system
 - Formation of secondary condensation products which inhibit monoamine oxidase (MAO).

Acetaldehyde and cigarette smoke


A variety of studies suggest that acetaldehyde is generated in the mainstream tobacco smoke mainly from the pyrolysis (and oxidative pyrolysis) of **polysaccharides**, including cellulose, that are present in tobacco blend.

Some scientific papers suggest that mainstream smoke acetaldehyde yields are related to soluble sugar levels quantified in the tobacco blends of different series of cigarettes

Soluble sugars and tobacco

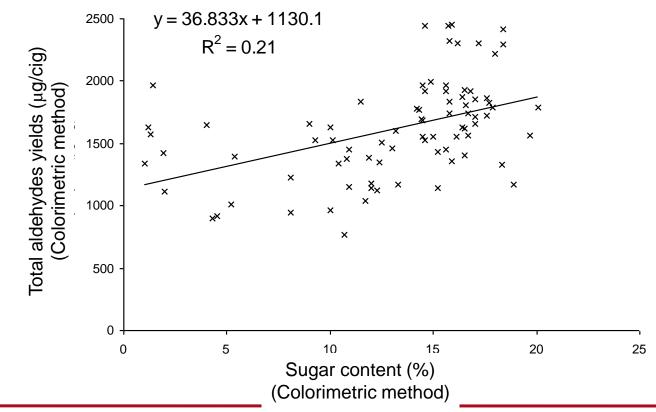
Soluble sugars are natural components of tobacco. They are formed via enzymatic hydrolysis of starch during curing.

Acetaldehyde and cigarette smoke

Soluble sugars are added to the tobacco blend in the form of casings, usually to those leaf components that have reduced sugar concentrations due to losses occurring during curing of, for example, air-cured Burley tobacco.

The contribution of tobacco ingredients on the composition of cigarette smoke is important and an active area of research

What is the contribution of soluble sugars to the production of acetaldehyde in mainstream smoke ?


Relationship between soluble sugars and mainstream smoke acetaldehyde yield?

- D.F. Phillpotts, D. Spencer, D.T. Westcott. (1975) The effect of natural sugar content of tobacco upon the acetaldehyde concentration found in cigarette smoke. Beitr. Tabakforsch.; 8; 7-10
- B.F. Zilkey et al. (1982) Chemical studies on Canadian tobacco and tobacco smoke. Tob. Int.; 184, 83-89
- J.I. Seeman, M. Dixon, H-J Haussmann (2002) Acetaldehyde in mainstream tobacco smoke: Formation and occurrence in smoke and bioavailability in the smoker. Chem. Res. Toxicol. 15, 1331-1349
- J. I. Seeman, S. W. Laffoon, A. J. Kassman (2003) Evaluation of relationships between mainstream smoke acetaldehyde and tar and carbon monoxide yields in tobacco blends of U.S. commercial cigarettes. Inhal. Toxicol. 15; 373-395
- R. Talhout, A. Opperhuizen, J.G.C. van Amsterdam (2006) Sugars as tobacco ingredient: Effects on mainstream smoke composition. Food Chem. Toxicol. 44, 1789-1798
- R.J. O'Connor, P.J. Hurley (2008) Existing technologies to reduce specific toxicant emissions in cigarette smoke. Tobacco Control 18; 139-148

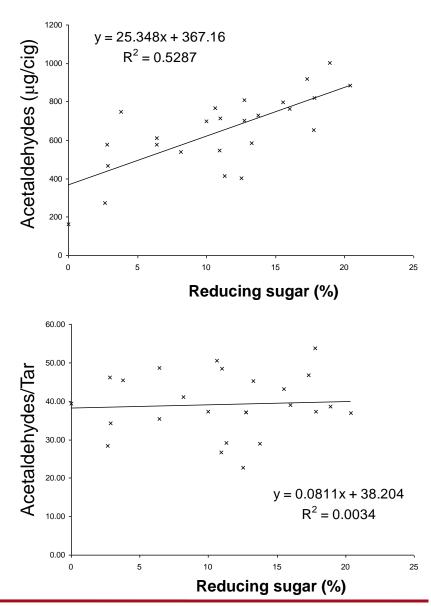
Sugar/Acetaldehyde

2011_ST27_Cahour 1975: Phillpotts et al. reported no correlation between MS aldehyde deliveries and sugar content of the tobacco (83 commercial brands)

D.F. Phillpotts, D. Spencer, D.T. Westcott. (1975) The effect of natural sugar content of tobacco upon the acetaldehyde concentration found in cigarette smoke. Beitr. Tabakforsch.; 8; 7-10

Sugar/Acetaldehyde

 1982: A study published (Zilkey et al.) on 25 different experimental cigarettes with different sugar levels concluded that there was a significant correlation between acetaldehyde and reducing sugars


\wedge

1982: Zilkey et al.
Cigarette tar yields ranged from

4.2 to 26.4 mg/cig

Normalization of acetaldehyde yields by dividing by the tar yields

⇒No correlation between MS aldehydes deliveries/tar and sugar

Sugar/Acetaldehyde

 2003: A benchmark study (Seeman et al.) on a large number of US cigarettes (for the available data over the time period 1985-1993) showed that the level of reducing sugars in the tobacco was <u>not correlated</u> to the level of acetaldehyde in mainstream smoke

	-	Correlation (r ²) of reducing sugars with :		
Year	Number of brands	Acetaldehyde	Acetaldehyde/tar	
1985	135	0.0899	0.0000	
1986	142	0.0715	0.0000	
1987	185	0.0872	0.0004	
1988	176	0.2349	0.0074	
1989	4	ND	ND	
1990	116	0.1633	0.0206	
1991	264	0.1387	0.0004	
1992	420	0.0847	0.0541	
1993	102	0.0436	0.0209	

ND: Non Determined due to small size of sample

J. I. Seeman, S. W. Laffoon, A. J. Kassman (2003) Evaluation of relationships between mainstream smoke acetaldehyde and tar and carbon monoxide yield in tobacco blends of U.S. commercial cigarettes. Inhal. Toxicol. 15; 373-395

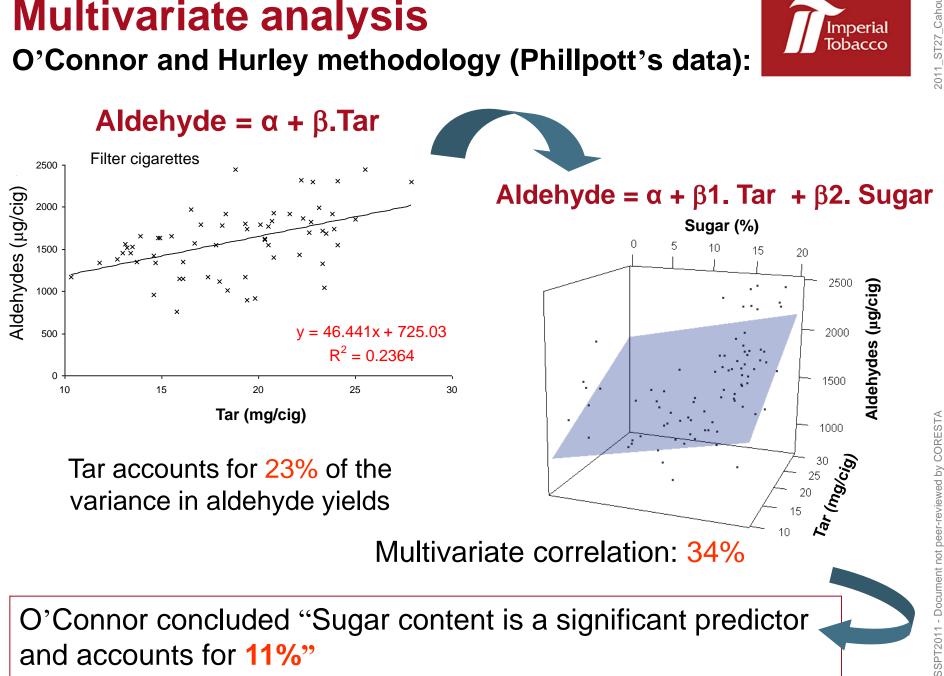
- 2008: O'Connor and Hurley claimed that <u>normalizing</u> for tar may obscure a sugar-aldehyde relationship.
- The authors suggested applying a <u>multivariate analysis</u> to determine the relationship between smoke aldehydes and tobacco sugar taking into account the tar yields.

2011_ST27_Cahour

O'Connor and Hurley methodology (Phillpott's data):

Imperial Tobacco

Tob Control 2008;17:i39-i48 doi:10.1136/tc.2007.023689 Supplement

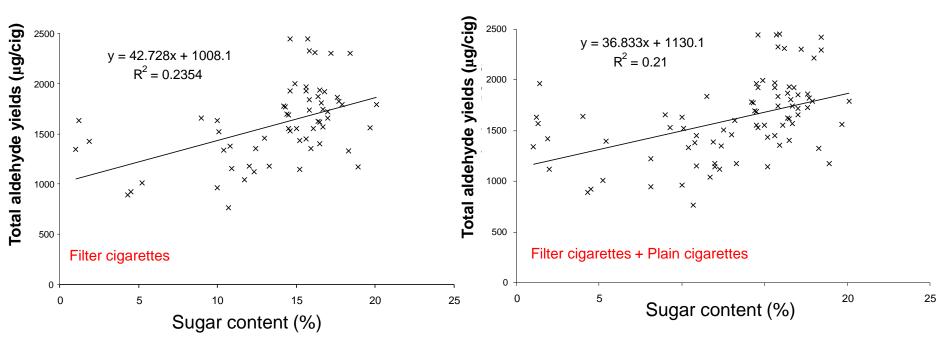

Existing technologies to reduce specific toxicant emissions in cigarette smoke <u>R J O'Connor</u>, <u>P J Hurley</u>

Department of Health Behavior, Roswell Park Cancer Institute, Buffalo, New York, USA Richard J O'Connor, Department of Health Behavior, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA; <u>Richard.Oconnor@roswellpark.org</u>

"...Zilkey et al²⁵ examined cigarettes prepared from tobacco types differing in sugar levels (that is, no added sugars). They reported that sugar levels accounted for over 50% of the variance in smoke acetaldehyde levels. Phillpotts of BAT reported that for 40 commercial UK brands, sugar content and moisture were unrelated to acetaldehyde yield, though acetaldehyde was related to TPM yield.²⁴ Similar associations were reported for brands from continental Europe. Re-analysis of the pooled data suggests that, if analysis is limited to filtered brands only, sugar content accounts for 23% of variability in aldehyde levels (β =0.48, p<0.001) and that sugar content is related to overall tar level (β =0.37, p<0.003). Published industry reports have generally normalised acetaldehyde yields to tar or TPM-these studies report no correlation between tobacco sugar content and smoke yields of acetaldehyde (reviewed by Seeman et al¹⁸). When we adjust the Phillpotts data for tar, we also find no relation. However, if one treats the problem multivariately, one sees a different pattern. If TPM is forced into the model first, it accounts for 23% of variance in aldehyde yield (β =0.48, p<0.001). This makes sense given TPM for filter cigarettes would be a surrogate for design features such as ventilation as well as mass of tobacco (which was not reported). If one then adds sugar content to the model, it is a significant predictor (β =0.35, p<0.004) and accounts for an additional 11% of variance in aldehydes and does not render TPM nonsignificant (β =0.35, p<0.004) by virtue of shared variance. So, normalising for tar may obscure a sugar-aldehvde association....'

2011_ST27_Cahours

Multivariate analysis is based on the statistical principle of multivariate statistics, which involves observation and analysis of more than one statistical varaible at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest.

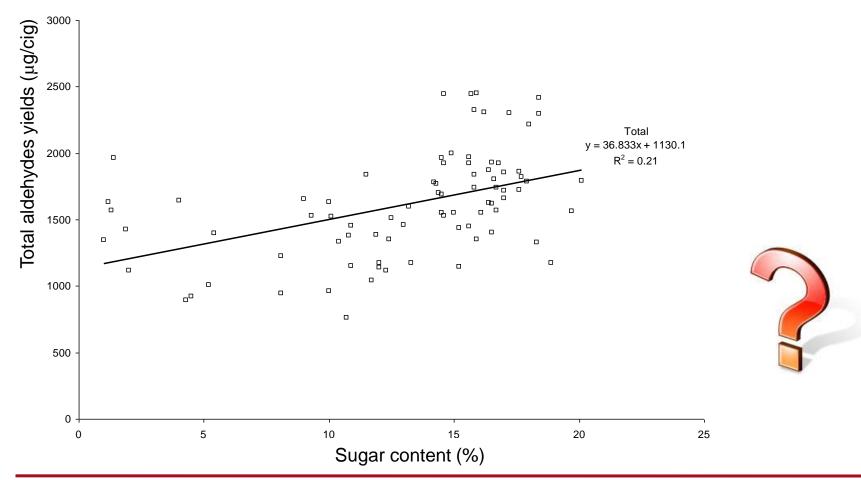

Multivariate analysis must take into consideration <u>all the known</u> <u>factor</u> in order to avoid misleading conclusion

Simple linear regression : Aldehyde = α + β .Sugar or Aldehyde/tar = α + β .Sugar

<u>Multiple regression</u> : Aldehyde = α + β 1.Sugar + β 2.Tar + ...

2011_ST27_Cahour

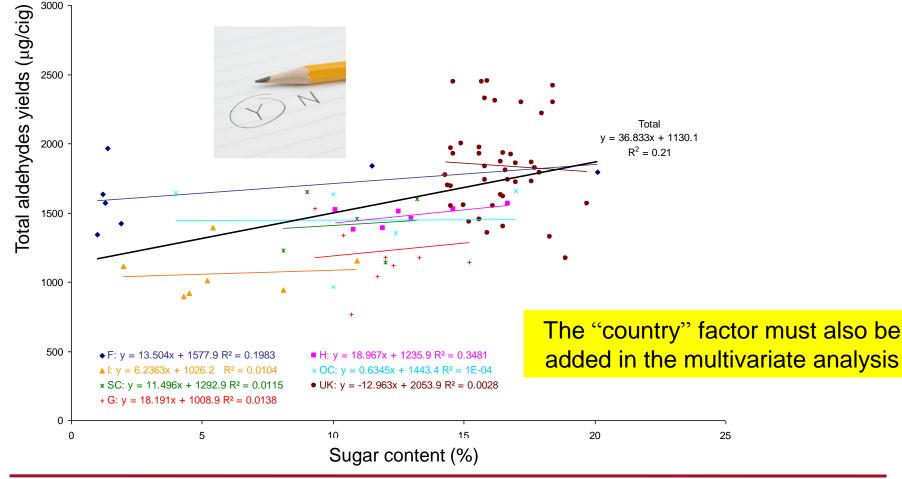
Re-analysis carried out by O'Connor (Phillpott's data) is limited to filtered brands only



To be complete: a qualitative factor with two modalities (filter or plain cigarettes) can be added to the model.

D.F. Phillpotts, D. Spencer, D.T. Westcott. (1975) The effect of natural sugar content of tobacco upon the acetaldehyde concentration found in cigarette smoke. Beitr. Tabakforsch.; 8; 7-10

Country effect?


Phillpotts et al. : "Italian brands had low sugar and low aldehyde yield whilst French brands had even lower sugar but higher aldehyde yield".

D.F. Phillpotts, D. Spencer, D.T. Westcott. (1975) The effect of natural sugar content of tobacco upon the acetaldehyde concentration found in cigarette smoke. Beitr. Tabakforsch.; 8; 7-10

Country effect?

Phillpotts et al. : "Italian brands had low sugar and low aldehyde yield whilst French brands had even lower sugar but higher aldehyde yield".

D.F. Phillpotts, D. Spencer, D.T. Westcott. (1975) The effect of natural sugar content of tobacco upon the acetaldehyde concentration found in cigarette smoke. Beitr. Tabakforsch.; 8; 7-10

Acetaldehyde = α + β 1.Filter or Plain + β 2.Country + β 3.Tar + β 4.Sugar

Factors	Sum of Squares	DoF	Mean Squares	F ratio	P_value.	Significance
Filter or Plain	124805	1	124805	1.86	0.1772	NO
Country	2.86515E6	6	477525	7.11	0.0000	YES
Tar	876612.	1	876612	13.05	0.0006	YES
Sugar	5697.82	1	5697.82	0.08	0.7717	NO
Residue	4.83815E6	72	67196.5			
Total	1.23991E7	81				STA

DoF: Degree of Freedom

- No effect of Filter or Plain cigarette: 1 group
- No effect of sugar

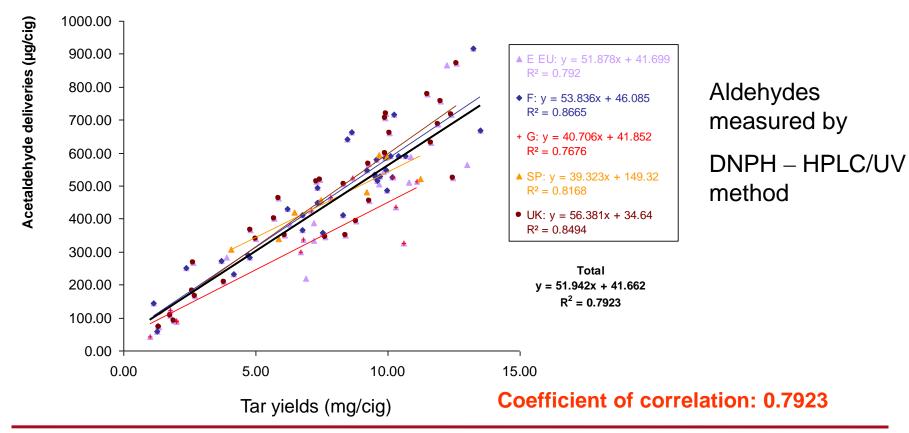
Taking into consideration all these factors: sugar content does not have a significant impact on aldehyde yields

Multivariate analysis* To precisely evaluate the sugar effect per country a GLM analysis have been performed with the sugar factor nested in the country factor.

Acetaldehyde = α + β 1.Country + β 2.Tar + β 3.Sugar(Country)

Country	Sugar content effect	Tar level effect
UK	NS	S
France	NS	NS
Germany	NS	NS
Scandinavia	NS	NS
Italy	NS	NS
OC	NS	NS
Holland	NS	NS

S: Significant NS: Non-significant


OC: Other country (Belgium, Luxembourg, Switzerland); H: Holland

No effect of sugar content on aldehyde yields <u>whatever</u> the country.

*General Linear Model (GLM)

Multivariate analysis - Dataset of current products

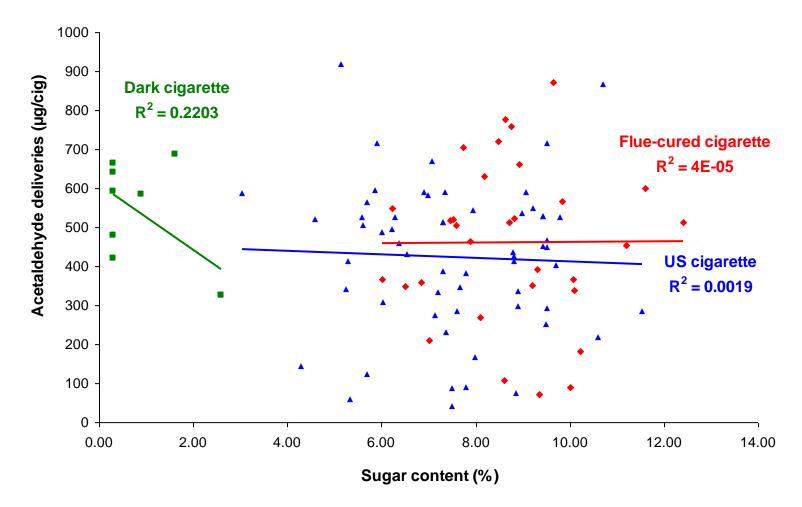
Data set obtained in our laboratory on 99 commercial brands from EU market: 12 from East Europe (Poland, Hungary, Ukraine); 34 from France; 14 from Germany; 8 from Spain and 31 from UK.

UK: United Kingdom; F: France; G: West Germany; E EU: East Europe (Poland, Hungary, Ukraine); SP: Spain.

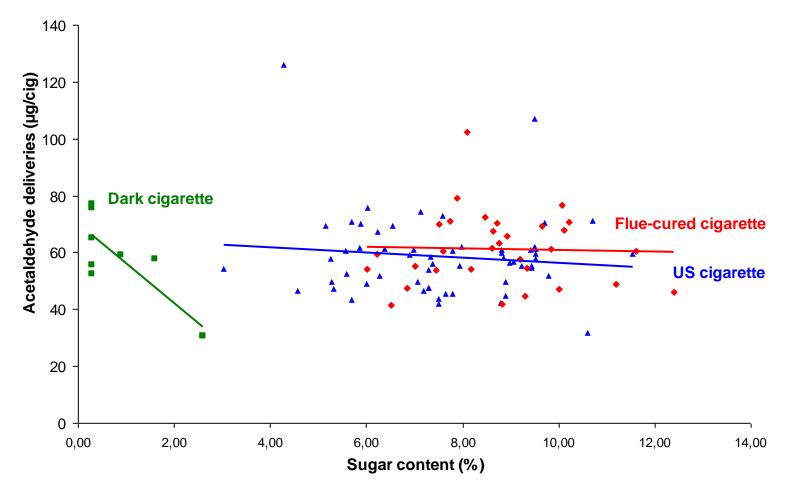
99 commercial brands from EU market:

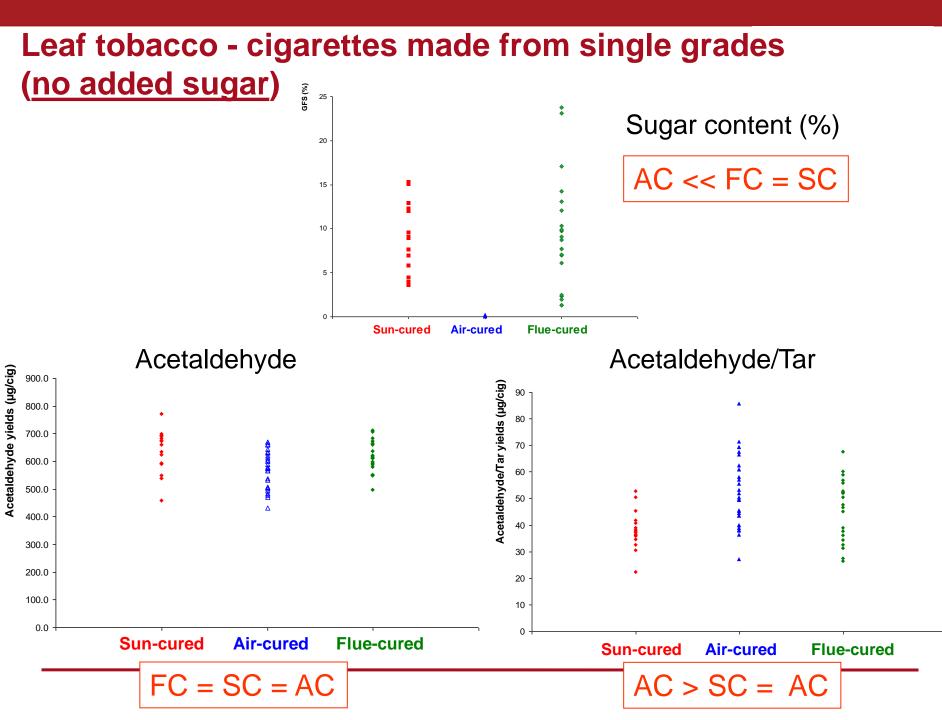
- 9 Dark blended cigarettes
- 31 Flue-cured blended cigarettes
- 59 US blended cigarettes

Acetaldehyde = α + β 1.Blend + β 2.Tar + β 3.Sugar


Factors	Sum of Squares	DoF	Mean Squares	F ratio	P_value.	Significance
Blend	34020.4	2	17010.2	2.22	0.1139	NO
Tar	2.7989E6	1	2.79891E6	365.90	0.0000	YES
Sugar	7552.46	1	7552.46	0.99	0.3229	NO _y
Residue	719051	94	7649.48	Sugar = GFS		
Total	3.6271E6	98	DoF: Degree of Freedo	m		-reviewed

Taking into consideration all the factors: sugar content does not have a significant impact on acetaldehyde yields


*General Linear Model (GLM) S


Sugar measured as sum of sucrose, glucose and fructose by HPLC

Acetaldehyde vs sugar content (Tobacco blend)

Acetaldehyde/tar vs sugar content (Tobacco blend)

Conclusion

- <u>No relationship</u> between soluble sugars and MS acetaldehyde yields has been proven even when <u>using multivariate analysis</u>
- Multivariate analysis must take into consideration <u>all the known factor</u> in order to avoid misleading conclusion
- <u>No distinction</u> of MS acetaldehyde yields <u>between</u> <u>Flue-cured and US blended cigarettes</u> irrespective of the sugar content
- <u>No distinction</u> of MS acetaldehyde between <u>Flue-</u> <u>cured</u>, <u>Sun-cured</u> and <u>Air-cured</u> tobacco (no sugar added)

Thank you !

2011_ST27_Cahours.pd