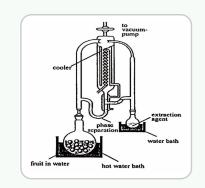

Abstracts

Traditional simultaneous distillation extraction(SDE) and solid-phase micro extraction(SPME) methods using GC/MS were compared for their effectiveness in the extraction of volatile flavor compounds from different tobacco leaves types(flue-cured, burley, oriental). The major volatile flavor compounds of flue-cured and burley tobacco were similar such as neophytadiene, solanone, megastigmatrienone isomers, βdamascenone and β -ionone. On the other hand, volatile flavor compounds such as norambreinolide, sclareolide were specifically identified in oriental tobacco. Each method was used to evaluate the responses of some analytes from real samples and standards in order to provide sensitivity comparisons between two techniques. Among three types of SPME fibers such as PDMS(Polydimethylsiloxane), PA(Polyacrylate) and PDMS/DVB (Polydimethyl-siloxane/Divinylbenzene) which were investigated to determine the selectivity and adsorption efficiency, PDMS/DVB fiber was selected for the extractions of the volatile flavor compounds due to its effectiveness. The qualitative analysis showed that the total amount of volatile flavor compounds in SDE method(130 species) was much more than that in SPME method(85 species). SPME method was more efficient for all the highly volatile compounds than SDE method, but on the other hand, low-volatile compounds such as fatty acids or high-molecular hydrocarbons were detected in SDE method. SPME method based on a short-time sampling can be adjusted to favor a selected group compounds in tobacco. Furthermore this results could be used to estimate the aroma characteristics of cigarette blending by using a different type of tobacco with more effectiveness and convenience

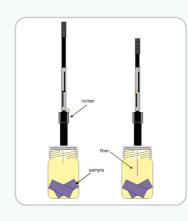

Introduction

- $\boldsymbol{\cdot}$ The character of flavor is quite important to the end product of tobacco industry
- · Flavoring material is attributed to tobacco taste in some extend
- · So understanding of flavor profile in tobacco is quite helpful for the development of product

Experimental

Simultaneous Distillation Extraction (SDE)

- Solvent is immiscible with and less dense than water
- ■Extraction time 2 to 3 hours
- Extracts is dried then concentrated before analysis
- Solvent (n-Hexane : Diethyl ether = 1:1)

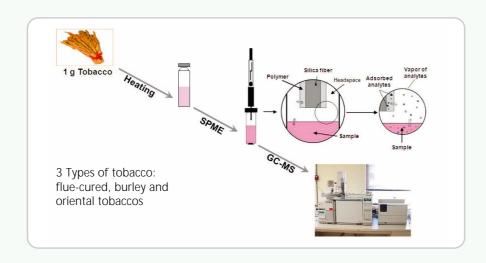

Benefits

- Provides efficient stripping of aroma volatiles from samples
- Multiple analyses can be obtained from one extract \rightarrow Analysis by GC, GC-MS etc.
- Complete extraction is possible
- Extract can be fractionated by column chromatography to give increased resolution

Drawbacks

- Losses of low-boiling volatiles
- Artifacts can be formed
- Not suitable for polar volatiles

Solid-Phase Microextraction (SPME)



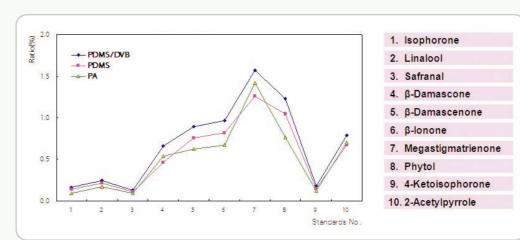
- Collected onto a fiber coated with adsorbant or absorbant polymer
- Equilibrium between sample, fiber and boadspace
- Needle can pierce septum in collection vessel and in GC injection port.
- Several types of fiber available with different properties.

■ Benefit

- Suitable for any sample or odorous material
- Minimal artefact formation
- Moderate sensitivity
- Suitable for low-boiling compoundsRelatively good results with polar compounds (adsorption)
- Uses conventional splitless injector
- Simple to use

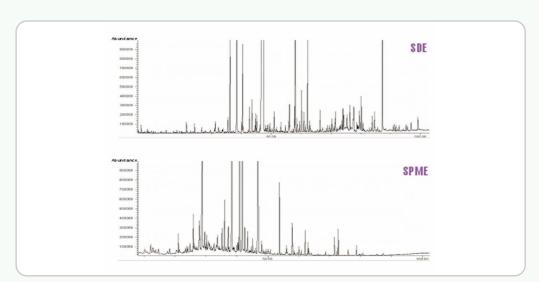
SPME experimental procedure

SPME and GC-MS Conditions


	SPIVIE CONDITION
Extraction	30 min at 90°C
Fiber	65 µm PDMS/DVB (Polydimethylsiolxane/divinylbenzene)
Adsorption	3 min
Desorption	2 min
	GC/MS Condition
Instrument	Agilent 6890N/5973i MSD
Scan range	m/z 40~400
Column	DB-WAX(30 m X 0.25 mm id, 0.25 μ m thickness)
Temp. program	50°C(3min) → 2°C/min → 240°C(30 min)
Ionization	Electron Impact
Injection	Split ratio(30:1), 1 /L
Carrier gas	Helium 1.1 mL/min

CDN/IT Condition

Study object


- To obtain useful information about flavor profile of different tobacco types and choosing adequate flavor analysis method is important
- To estimate the aroma characteristics of cigarette blending by using a different type of tobacco with more effectiveness and convenience.

Result

Figure 1. Response of the three SPME fibers to 10 standards.

The PDMS/DVB fiber was shown to be the most efficient at extracting the selected standards. The parameters were optimized: 90°C adsorption temperature, 3 min of adsorption time, 250°C desorption temperature and 2 min of desorption time.

Figure 2. GC/MS chromatograms of the volatile compounds in flue-cured tobacco by different extraction methods.

Table 2. Comparison of number of functional groups identified in three-types tobacco by different extraction methods.

Functional groups		SDE		SPME							
Functional groups	Flue-cured	Burley	Oriental	Flue-cured	Burley	Oriental					
Ketones	24	21	22	21	19	18					
Nitrogenous	11	10	12	7	7	7					
Alcohols	22	21	21	15	14	14					
Aldehydes	13	12	10	6	5	5					
Esters	13	10	9	7	5	6					
Acids	11	8	11	5	4	5					
Hydrocarbons	17	16	17	11	9	10					
Miscellaneous	19	19	20	13	13	14					
Total	130	117	122	85	76	79					

Conclusion

This study clearly shows that comparison for their effectiveness in the extraction method of volatile flavor compounds from different tobacco leaves types (flue-cured, burley, oriental)

Traditional SDE analysis of volatile compounds is a widely used technique. However the SDE method lacked the sensitivity and convenience needed to perform adequately. Comparison of SDE and SPME showed that SPME determinations of flavor volatile compounds were more sensitive under the conditions employed in this study. Different SPME fiber were investigated to determine the selectivity of the various fiber. The PDMS/DVB fiber was shown to be the most efficient at extracting the selected standards. Consequently, SPME was suitable for simple, rapid, routine screening, while SDE was used for proper quantitative analysis.

Table 1. Volatile compounds identified in three-types tobacco leaf by different extraction methods.

				SDE			SPME						SDE			SPME						SUE			SPME	
No. Compounds	R.T (min)	Flue-		Respon	ratio(%)			No.	No. Compounds	R.T (min)	Flue.		Respon	se ratio(%)			No.	Compounds	R.T (min)	Flue-		Respons	e ratio(%) Flue-			
			cured	Burley	Oriental	cured	Burley	Oriental				cured	Burley	Oriental	cured	Burley	Oriental				cured	Burley	Oriental	cured	Burley	Orien
	Citral	7.41	0.1258	0.0004	0.5191				48	n-Hexadecane	29.57	0.2197	0.2677	0.3026	0.1494	0.1740	0.2088	95	Nerolidol	52.09	0.1094	0.0754	0.2047	0.0744	0.0490	0.141
2	Limonene	8.25	0.1007	0.1092	0.0038	0.0685	0.0709	0.0026	49	4,5,6,7-Tetramethyl-2H-isoindole	29.87	0.0560	0.0104	0.0380				96	n-Octanoic Acid (Caprylic acid)	53.18	1.1137	0.2571	1.4795	0.7573	0.1671	1.020
	n-Dodecane	8.44	0.0423	0.0368	0.1652				50	Safranal	30.80	0.2311	0.1358	0.0641	0.1571	0.0883	0.0443	97	N,N-Dimethyl-4-aniline	54.73	0.5417	0.0835	0.2397	0.3684	0.0543	0.16
	Isopentyl alcohol	8.62	0.2491	0.2242	0.1120				51	Benzeneacetaldehyde	38.95	2.5398	3.3871	1.5265	1.7271	2.2016	1.0533	98	Methyl pentadecanoate	55.41	0.0938	0.0697	0.0795	0.0638	0.0453	0.05
	2-Hexenal	9.00	0.0603	0.0318	0.1298				52	1-Undecanol	31.20	0.5250	0.0313	0.3142	0.3570	0.0203	0.2168	99	Hexahydro farnesyl acetone	55.83	0.5910	4.0329	3.6263	0.4018	2.6214	2.50
	2-Hexanol	9.20	0.2293	0.0034	0.0011				53	Acetaldehyde ethyl amyl acetal	32.24	0.8180	0.4334	0.1657				100	Megastigmatrienone 1	56.06	1.3497	0.3806	0.5451	0.9178	0.2474	0.37
	2-Pentyl furan	9.74	0.2495	0.2036	0.9473	0.1697	0.1323	0.6536	54	2-Furanmethanol(furfural alcohol)	32.64	0.1394	0.1203	0.2453	0.0948	0.0782	0.1692	101	3-Amino-2-cyclohexenone	57.31	0.3968	0.2619	0.9303	0.2699	0.1703	0.64
	6-Methyl-2-heptanone	9.86	0.1009	0.1234	0.1851				55	Farnesyl alcohol/fanesol)	23 18	0.1077	0.0399	0.3859	0.0733	0.0259	0.2663	102	Megastigmatrienone 2	57.95	4.9853	0.0985	0.7757	3.3764	0.0640	0.53
	n-Hexanal diethyl acetal	9.80	0.2613	0.6430					56	4-Ketnisonhorone	33.45	0.2583	0.6974	0.8785	0.1756	0.4533	0.6062	103	Myristic alcohol	58.20	0.1460	0.1346	0.3234	0.0993	0.0875	0.2
	2.6.Dimethypyridine (2.6.	5.00	0.2013	0.0430					57	4-Methyl-Valeric acid.methyl ester	33.52	0.4031	0.0002	1.2035	0.1130	0.4555	0.0002	104	4-Vinylouaiacol	58.52	2.4652		0.0204	1.6763	0.0010	-
	Lutidine)	10.08	0.0059	0.0214	1.6453				58	n-Decyl acetate	33.74	0.1910	0.0851	1.2035				105	3-(4,8,12-trimethyltridecyl) furan	59.49	1.8985	7.9817	12.1338	1.2909	5.1881	8.3
1	2.5-Dimethylphenol	10.44	0.1209	0.0718	0.1850				58	Terpineol	34.23	0.1910	0.0051	0 1097	0.0529	0.0157	0.0757	106	Palmitic acid, methyl ester	60.08	4.3597	0.7982	1.4071	2 9646	0.5188	0.97
	2-Methyldihydro-3(2H)-								-												1,000					-
	furanone	10.98	0.1817	0.1534	0.0905	0.1235	0.0997	0.0624	.60	Eucarvone	34.87	0.0570	0.0766	0.1240	0.0388	0.0498	0.0856	107	Megastigmatrienone 3	60.84	1.0953	0.0148	0.1043	0.7448	0.0097	0.07
	1,2,4-Trimethylbenzene	11.69	0.0243	0.0122	0.0964	0.0165	0.0079	0.0865	61	n-Heptadecane	35.13	0.1253	0.1615	0.3864	0.0852	0.1050	0.2666	108	1-Vinylcyclododecanol	61.05	0.0008	0.7306	0.6066			
	4-Methylpyridine	11.92			0.0689				62	Phenylacetaldehyde	35.43	1.7846	2.6509	-	1.2135	1.7231	-	109	3-Isopropenyl-5- methylcyclohexene	61.29	0.2663	0.1516	0.1116			
	2-Isopropylpyridine	1230			0.2348				63	Neophytadiene	35.56	8.8641	6.4515	4.6645	6.0276	4.1935	3.2185		Palmitic acid, ethyl ester	61.76	0.2066	0.3514	0.4291			
	n-Tridecane	12.95	0.1388	0.1136	0.1173	0.0944	0.0738	0.0809	64	Solanone	36.08	4.1531	3.1241	3.3955	2.8241	2.0307	2.3429							3 5744		
	cis.2./2.Pentenylifuran	13.01	0.0464	0.0689	0.1766	0.0316	0.0448	0 1219	65	3,4,7-Trimethyt-1-indanone	36.65	0.1887	-	0.0458				111	Megastigmatrienone 4	62.10	5.2565	0.0095	0.1214		0.0062	0.0
	2.2.6-Trimethylcyclohexanone	13.19	0.0721	0.0431	0.1296	0.0490	0.0280	0.0894	66	β-Damascone	40.00	0.9705	0.6300	1.0648	0.6599	0.4095	0.7347	112	n-Decanoic acid (Capric acid)	62.73	0.6986	0.1291	0.9816	0.4750	0.0839	0.6
	2-(1-Methylbutyl)oxirane	13.54	0.0518	0.0502	0.1258	0.0480	0.0200	0.0034	67	β-Damascenone	40.32	10.5588	2.8708	8.0433	0.8953	0.4695	0.7368	113	2(4H)- Benzofuranone. 5.6.7.7-	63.02	0.8249	0.1210	16801			
	3-Methyl-2-butenok/Prenyl	13.34	0.0010	0.0002	0.1250				68	1,5,8-Trimethyl-dihydronaphthalene	40.52	0.7145	0.0053	0.1732				1,10	tetrahydro-4,4,7-trimethyl	00.02	0.0240	0.12.10				
	alcohol)	13.86	0.1482	0.0242	0.1885	0.1008	0.0157	0.1301	69	3-Phenylaniline	41.19	0.0333	0.0155	0.4851				114	Isophytol	63.49	0.2987	0.9806	0.6421	0.2031	0.6374	0.
	6-Methyl-5-heptene-2-one	14.63	0.1900	0.1521	1.1294	0.1292	0.0989	0.7793	70	3,3-Dimethyl-6-methylene-	42.22	0.1463	0.1496	0.7484				115	Cuminyl acetate	63.71	0.0659	-		0.0448		
	1-Hexanol	15.55	0.0681	0.1055	0.1155	0.0463	0.0686	0.0797	70	1-cycolhexene	42.22	0.1463	0.1496	0.7484					7,10,13-Hexadecatrienoic							
	Cis-3-Hexenol	17.13	0.2163	0.1058	0.2329	0.1471	0.0688	0.1607	71	trans-Geranylacetone	42.58	0.9738	0.7748	0.5876	0.6622	0.5036	0.4054	116	acid, methyl ester	65.45	0.1160	140				
	4.Methyl-3-penten-1-pl	17.41	0.0599	0.0264	0.1021	2.111		0.1001	72	n-Hexanoic acid(Caproic acid)	42.75	0.2930	0.0595	1.2606	0.1993	0.0386	0.8698	117	Farnesyl acetone	66.33	1.3031	1.5025	1.4837			
	3-Pentyl furan	17.59	0.0760	0.0487	0.1522	0.0516	0.0316	0.1050	73	Propanoic acid, 2-methyl- 2-	43.21	0.1079		0.2905	0.0733		0.2005	118	Indole (Benzopyrrole)	68.48	0.4743	0.2460	1.6975	0.3225	0.1599	1.1
		18.01	0.0760	0.0071	0.7624	0.0516	0.0310	0.1030		ethyl-3-hydroxyhexyl ester	40.21	0.1015		02303			0.2000	119	Heptadecanoic acid, methyl ester	68.89	0.2810	0.0590	0.0934	0.1911	0.0384	0.0
	Citronellyl 2-butenoate								74	Terpinolene	43.29	0.0396	=	0.4224	0.0269	=	0.2915	400	11-Octadecenoic acid,methyl		0.1685	0.0976				
	n-Tetradecane	18.25	0.2837	0.3150	0.1776	0.1929	0.2047	0.1226	75	Benzyl alcohol	43.47	4.0925	0.0584	2.2376	2.7829	0.0380	1.5439	120	ester	69.49	0.1685	0.0976				
	1,4-Dimethyl-3-cyclohexeryl methyl ketone	19.16	0.3209	0.0123	0.1394				76	Isolimonene	43.98	0.1264	0.0671	0.2863	0.0860	0.0436	0.1423	121	8,11-Octadecadienoic acid,	71.36	0.4338	0.0689	0.0964			
	Furfural	21.45	2 3998	2.0326	2.8451	2 63 19	2.3212	2.9631	77	4-Carene	44.47	0.3554	0.7008	0.5900	0.2417	0.4555	0.4071		methyl ester							
	Acetic acid	21.52	0.3072	0.5273	1.6418	0.2089	0.3427	1.1328	78	Fenchene	44.67	1.0863	0.9011	2.0019	0.7251	0.5857	1.3813	122	Vanillin	73.23	0.7180	0.0499	0.1107			
	Runnene	21.52	0.3012	0.0213	0.0034	0.2089	0.3427	0.0023	79	Phenylethyl Alcohol	45.08	4.1846	0.1752	4.4805	2.8455	0.1139	3.0915	123	Thunbergol	73.64	0.3077	0.0826	1.0013			
	p. 11.11.12		4.1044			0.0710	0.0014	0.0023	80	Hydroxy(4-hydroxyphenyl)	45.94	0.2270		0.6100	0.1544		0.4209	124	Linolenic acid, methyl ester	73.97	1.0934	0.0799	0.3884	0.7435	0.0520	0.2
	2,4-Heptadienal	22.78	0.3593	0.0443	0.4822				00	acetic acid	45.84	0.2210	-	0.6100	0.1544	-	0.4208	125	Phytol	76.36	1.8064	0.4717	4.9336	1.2284	0.3066	3.4
	2-Ethylhexanol	23.21	0.1004	0.1236	0.0729				81	β-lonone	46.11	1.4176	0.4860	1.1382	0.9640	0.3159	0.7854	126	3-Methyloctadecane	79.92	0.7389	0.3275	2.8630			
	2-Ethyl-5-methylfuran	23.52	0.4215	0.3590	0.5596	0.2866	0.2334	0.3861	82	Pinene	46.75	1.9552	3.3881	4.5352	1.3296	2.2023	3.1293	127	5-Hydroxy-3-methyl-1-indanone	80.71	1.1057		-			
	n-Pentadecane	23.91	0.1514	0.1703	0.1313	0.1030	0.1107	0.0906	83	Caryophyllene oxide	47.59	2	2	0.1536				128	Pentadecanoic acid	83.52	0.1903	0.0274	0.5142			
	Benzaldehyde	24.21	1.4098	0.6235	3.6243	0.9586	0.4053	2.5007	84	2-Methyl-1,3-benzenediol	47.76	0.1958	-	-23				129	Sclaral (sclareolide lactol)	84.24			0.2260			
	trans-2-Nonenal	25.19	0.0300	0.0175	0.0895				85	2-Acetylpyrrole	48.02	1.1639	0.0279	0.3265	0.7915	0.0181	0.2253	130	5-Methyl-1-cyclopentene-	85.66	0.1375		0.0722			
	Nonanal diethyl acetal	25.39	0.1674	0.6159	-				86	4,4-Dimethyl-2-cyclohexenone	48.25	0.1560	-	-	0.1061	-	-	130	1-carboxylic acid	85.66	0.13/5		0.0722			
	2-Methyl-2-nonen-4-one	25.77	0.0851	0.1503	0.1223	0.0578	0.0977	0.0844	87	β-lonone epoxide	48.63	0.7926	0.4200	0.6093	0.5390	0.2730	0.4204	131	Palmitic acid	87.26	7.7973	0.3658	5.9471			
	Linalool	26.55	0.3578	0.1455	0.2072	0.2433	0.0946	0.1430	88	4-Hexyloxyaniline	48.84	0.7989	0.3146	1.6498	0.5433	0.2045	1.1384	132	Norambreinolid	87.61	-	-	1.3670		-	0.9
	5-Methyl furtural	27.29	0.2920	0.0112	0.4314	0.1986	0.0073	0.2977		4-(2.6.6-Trimethylcyclohexylibut				202				133	Oleic Acid	95.21	0.2324		0.1188			
	Isophorone	27.56	0.2462	0.2932	0.3275	0.1674	0.1906	0.2260	89	-3-en-2-one	49.26	0.2524	0:1090	0.2249	0.1716	0.0708	0.1552	134	Diphenyl sulfone	95.74	1.0490	1.5694				
	Hexanoic anhydride	27.75	0.3335	0.0526	1,8777	0.2268	0.0342	1.2956	90	4,5-Quinolinediamine	49.43	0.6538	0.2679	1.0434	0.4446	0.1742	0.7200	135	Linoleic acid	96.88	0.4904	0.0416	0.1792			
	2-Cyclopentene-1,4-dione	27.79	0.2995		-	0.2037	2	0	91	5-Amino-1-phenylpyrazole	49.63	0.2333	0.0369	0.2794	0.1587	0.0240	0.1928									
	6-Methyl-3,5-heptadien-2-one	28.30	0.2188	0.0780	1.3835	0.1488	0.0507	0.9546	92	2-Methyl-2,3-dihydrobenzofuran	59.25	0.3140	0.2090	0.3579		0.1359	0.2470									
	3.3.5-Trimethylcyclohexene	28.71	0.0473	0.0183	0.2005	20025			93	Methyl myristate	50.54	0.1433	0.0756	0.2128	0.0974	0.0491	0.1468									
	p.Ethoxyanisole	29.44	0.1952	0.0183	13408	0.1327	0.0248	0.9251	94	5-Ethyl-m-xylene	50.90	1,4724	0.0730	0.3499	1.0013	0.0180	0.2414									
	P-FRANK ARTIPORE	68.44	0.1825						0.4	V-Conyv-III-Ayretre	99.00	1.4164	0.0611													