

Improved methods for the determination of crop protection agents residues in tobaccos and tobacco products by LC-MS/MS using the QuEChERS extraction

DEGER Ayse and JACCARD Guy
CORESTA Congress 2012

Objective

- Improve LC methods used for the determination of crop protection agents (CPA) recommended in the CORESTA ACAC guideline N°1 "Agrochemicals provided with Guidance Residue Levels"
 - Previously used methods were time consuming (multi residues methods based on automated solvent extraction and solid phase extraction clean-up)
 - Examine QuEChERS methodology as an analytical tool

Agenda

- Crop protection agents covered by the methods
- Background of QuEChERS methodology
- Need to have two methods
- Clean-up and analytical conditions
- Validation design
- Results
- Conclusion

Scope

- The CORESTA Guideline Nº1 * covers 118 CPA
- Around half of the CPA are analyzed by gas chromatography (GC) and the other half by liquid chromatography (LC)
- Some CPA are analyzed by wet chemistry
- In this presentation, we will cover only 51 CPA analyzed by LC

^{*} http://www.coresta.org/Guides/Guide-No01-GRLs(2nd-Issue-June08-Addendum-June10).pdf

QuEChERS multi residue method

QuEChERS = Quick, Easy, Cheap, Effective, Rugged, Safe

- QuEChERS is a miniaturized, simple and rapid multi residue method developed by Anastiassades et al. (2003) * for the determination of pesticides from fresh commodities, such as fruits and vegetables
- QuEChERS proved to be a very powerful multi residue method that can cover a large variety of different pesticide compound classes with excellent recoveries

^{*} Anastassiades, M., S. J. Lehotay, D. Stajnbaher and F. J. Schenck (2003): "Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce." Journal of AOAC International 86(2): 412-431

Principle of the QuEChERS method

Extraction

- extraction of a tobacco aqueous suspension with acetonitrile
 - buffer salt induced phase separation

Clean-up

- dispersive solid phase extraction with PSA (Primary Secondary Amine) in the acetonitrile phase

LC-MS/MS

6 6

The issue of acidic herbicides

- For three CPA (2,4-Dichloro phenoxyacetic acid, Dicamba and 2,4,5-Trichloro phenoxyacetic acid), the QuEChERS methodology needed to be modified, due to their acidic properties. It resulted in the development of two methods
- Method 1
 - Analysis of 48 CPA residues in tobacco samples by LC-MS/MS using QuEChERS extraction method
- Method 2
 - Analysis of acidic CPA (2,4-Dichloro phenoxyacetic acid, Dicamba and 2,4,5-Trichloro phenoxyacetic acid) in tobacco samples by LC-MS/MS using modified QuEChERS extraction method

Chemical structure of acid herbicides

2,4-Dichlorophenoxyacetic acid (2,4-D)

2,4,5-Trichlorophenoxyacetic acid (2,4,5-T)

3,6-dichloro-2-methoxybenzoic acid (Dicamba)

List of analyzed CPAs

46 Thiophanatne-methyl

47 Trichlorfon Vamidothion (sum) Vamidothion sulfone 48 Vamidothion sulfoxide Method 2

49 Dicamba 50 2,4-Dichlorophenoxy acetic acid 51 2,4,5-Trichlorophenoxy acetic acid

- **Active** substances and some of their metabolites
- Method 1 QuEChERS
- Method 2 Modified QuEChERS

Classes of compounds

- Organochlorines
- Carbamates
- Triazoles
- Neonicotinoids
- Ureas
- Amides
- Organophosphorous
- ...

Method 1, Step by step (1/2)

Method 1 step by step (2/2)

12

Method 2, step by step

- Same process as for method 1, with following modifications
 - pH adjustment, before the addition of acetonitrile
 - No clean-up step with PSA, MgSO₄
 - No dilution of final solution

Chromatographic conditions

- HPLC 1100 system (Agilent) coupled to an API 4000 tandem mass spectrometer (Applied Biosystems)
- Phenomenex Luna C18(2) column, 150 x 2mm, 5 µm with pre-column

	Method 1	Method 2
Flow Rate	0.4 mL/min	0.4 mL/min
Autosample Dilution	1:10 (2 μL sample extract + 18 μL ACN/0,05% acetic acid (200+1600))	-
HPLC Solvents	A=Water+0.05% acetic acid B=Methanol+0.05% acetic acid Gradient from 10 to 90 % B	A=Water+0.1% formic acid B=Methanol+0.1% formic acid Gradient from 5 to 35% B
Ionisation Mode	Positive ionization	Negative ionization

Data evaluation

- Automatic integration, each peak is manually checked for correct peak finding and integration
- Calibration samples are prepared in the tobacco matrix (matrix-matched standards)
- Quantitation is done against linear calibration curves (7 concentration levels) with origin through zero
- 2 specific mass transitions per analyte with dwell time each 18 msec
- Qualitative confirmation criteria: (i) Peak area ratio of quantifier and qualifier mass transition (MRM ratio), and (ii) the retention time

Validation design

- The validation experiments were performed with a mixture of blank FC and BU (50-50, w/w)
- 3 spiking levels at 0.05, 0.5 and 1.25 mg/kg each analyte to the mixed tobaccos
- 3 replicates at each spiking level -> n=9
- 1 control blank sample
- Recovery rates were determined by quantifying against linear calibration curve of matrix-matched standards at 8 concentration levels
- Acceptance criteria: recovery 70-120%, relative standard deviation <20% (According to CORESTA Guide No 5, Technical guideline for pesticide residues analysis on tobacco and tobacco products)

Method 1 typical chromatogram

Matrix-matched standards, 10 µg/mL

e.g. Omethoate, m/z 214->183 amu

Method 2 typical chromatogram

Results for method 1

Calibration (R ²)	0.999 - 0.9931
Limit of quantification	Accordance with the CORESTA requirement
Repeatability of extraction (coefficient variation)	<10%
Instrument repeatability (coefficient variation)	<10%
Recovery	Accordance with the CORESTA requirement*

The method can be used for Pymetrozin.

^{*}Except 62% Recovery for Pymetrozin because of a lack of extraction efficiency. Nevertheless, the low recoveries had been proven to be very stable in the same range.

Results for method 2 (acid herbicides)

Calibration (R ²)	0.997 - 0.988
Limit of quantification	Accordance with the CORESTA requirement
Repeatability of extraction (coefficient variation)	<12%
Instrument repeatability (coefficient variation)	<12%
Recovery	93% - 97%

Conclusion

- Multi residue method with reduced analysis time
 - Previous multi residue method 28 samples / 6 days
 - QuEChERS28 samples /1.5 days
- Lower consumption of solvents
 - Previous multi residue method ca. 60 mL / sample
 - QuEChERS ca. 10 mL / sample

Wide range of extractable CPA with very good recovery rates

Results in collaborative test

- We participated to the last FAPAS* collaborative test
- Our results were all in the acceptable range (z score <2) for the active substances (8) analyzed with the QUECHERS LC MS/MS method

^{*} Food Analysis Performance Assessment Scheme

Aknowledgment

- Françoise Mischler (Practical work)
- Dr. Thomas Anspach (Scientific advise)
- Andre Stratmann (Scientific advise)