Estimation of mouth level smoke exposure in cigarettes with different tar content using filter analysis

<u>Ryuji Bito,</u> Naoki Minami, Aoi Kakehi, Dai Yuki, Masahiro Onozawa

JAPAN TOBACCO INC.

Outline

1. Background/Purpose

2. Experiment (i, ii) Materials and Methods Results

3. Summary and Conclusion

1. Background/Purpose

- Relationships between ISO tar and nicotine yields and estimated tar and nicotine mouth level exposures (MLEs) have been reported ^{1, 2)}.
 - → For other constituents and under other smoking conditions, the relationships between the machine-derived smoking yields and the MLEs are still not clear.
- A filter analysis method has been developed to estimate the MLE to cigarette smoke constituents. MLEs to four constituents (nicotine, NNK, pyrene, acrolein) have been estimated using the filter nicotine content ³⁾.

 \rightarrow It is not clear whether MLEs to other constituents can be estimated using filter analysis.

Purpose:

To investigate the relationship between "machine yield" and "estimated MLE" for many constituents

- 1) Mariner et al. (2011) Regul Toxicol Pharmacol. 61: S39-50.
- 2) Nelson et al. (2011) Regul Toxicol Pharmacol. 61: S25-38.
- 3) Shepperd et al. (2009) Regul Toxicol Pharmacol. 55: 97-109.

Experiment (i)

Validation of a method for estimating MLE using filter nicotine content

Experiment (ii)

Estimation of MLE to each constituent in low tar cigarette (LTC) and ultra-low tar cigarette (ULTC) smokers

Experiment (i)

Validation of a method for estimating MLE using filter nicotine content

Experiment (ii)

Estimation of MLE to each constituent in low tar cigarette (LTC) and ultra-low tar cigarette (ULTC) smokers

2012_SSPT18_Bito.pdf

Target constituents

TNCO

Tar Nicotine Carbon monoxide

TSNAs

NNN	
NAT	
NAB	
NNK	

PAHs

1-Aminonaphthalene 2-Aminonaphthalene 3-Aminonaphthalene 4-Aminonaphthalene Benzo(a)pyrene

Carbonyls

Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde Crotonaldehyde Methyl ethyl ketone n-Butyraldehyde

Phenolics

Hydroquinone Resorcinol Catechol Phenol m/p-Cresol o-Cresol

Organic Compounds

1,3-Butadiene Isoprene Acrylonitrile Benzene Toluene Styrene

NOx

Nitric Oxide (NO) NOx

Others

Ammonia Hydrogen cyanide

Target Constituents : 36

6/18^{BIT18}^{BIT0.pdf}

	Solution of the second se									
							Each	ı consti	tuent (u	nit*)⊖
	Test ciga	rettes				Smoke constituent	IS	0	H	∑I
							LTC	ULTC	LTC	ULTC
- 1						Tar	5.9	0.9	23.3	13.9
						Nicotine	0.51	0.09	1.64	1
		Smaking	-	NII (I	00	Carbon monoxide	7.2	1.2	26.8	20.3
		Smoking	Tar	Nicotine	CO	NNN	32.8	10	96.4	70.2
		-				NAT	38.7	8.87	108	85.7
		condition	(mg/cig)	(mg/cig)	(mg/cig)	NAB	4.69	1.23	13.4	9.54
		••••••				NNK	19.7	3.91	61.7	47.1
						1-Aminonaphthalene	8.24		19.2	
						2-Aminonaphthalene	5.16		12.4	8.6
	LTC	ISO	6	0.5	7	3-Aminonaphthalene	1.28		3.72	
		130				4-Aminonaphthalene	1.05		2.93	
						Benzo(a)pyrene	5.32		14.5	
						1,3-Butadiene	21.9		94.4	80.5
	Low Tar					Isoprene	142		658	642
	• ••••••					Acrylonitrile	3.22	0	20.8	
	Cigarette	HCI	23	1.6	27	Benzene	16.4		71	
						Toluene	19.1	2.81	103	
						Styrene	1.83		14.9	
Ē	ULTC	ISO	1	0.1	1 20	Formaldehyde	17.4		95.2	
						Acetaldehyde	355		1438	
						Acetone	120	23.4	516	41 ∯
	OLIO	130	I			Acrolein	28.9	4.35	144	136
	A. See					Propionaldehyde	22.3	4.05	96.9	83.9
	Ultra					Crotonaldehyde	5.45	0	38.6	36.∯
						Methyl ethyl ketone	27.3 14.7		121 55	98:≸ 40 b
1	Low Tar		4.4	4.0		n–Butyraldehyde Hydroguinone	36		96	49. <u>9</u> 57.æ
		HCI	14	1.0		Resorcinol	0.74	7.48 0.15	2.17	<u></u>
	Cigarette					Catechol	33.4	7.25	83.9	1.5© 47.≇
L	U	Phenol	6.23	0.43	13.1	47.9 7.28				
								0.43	11.8	
	Machine vielde of 36 constituents : 0-Cresol							0.56	4.47	0.23 2.18
	Machine yields of 36 constituents :							21.4	279	2.18
							93.9 96.6		279	223 23%
	"ULTC < LTC" under both ISO and HCI $NOx = 96.6 \ 21.4 \ 291 \ 23\%$									

ULIC < I under both ISO and HCI コし

11.92 33

18.2

356

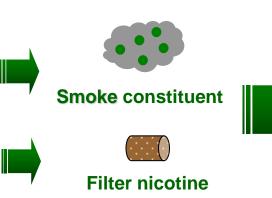
0.79

2.36

4.68

48.4

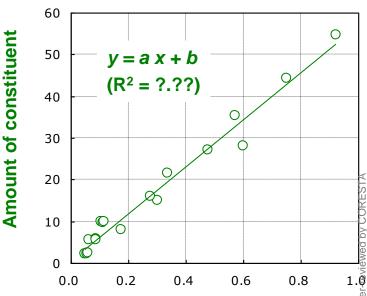
Ammonia


Hydrogen cyanide

Measurement

Derivation of estimation formula

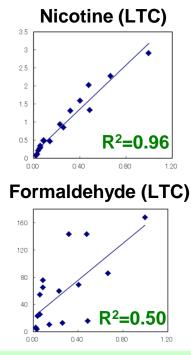
Machine smoking



18 smoking conditions

Parameter	Smoking conditions
Puff volume	3 conditions
(ml/puff)	30 ml, 70 ml, 120 ml
Puff duration	1 condition
(sec/puff)	2.0 sec
Inter-puff interval	3 conditions
(sec)	10 sec, 30 sec, 60 sec
Butt length / Puffs	2 conditions
(mm)/(Puffs)	Tipping+3 mm, 3 puffs

Estimation formula (calibration curve)


Filter nicotine content

2012_SSPT18_BILOP

Correlation between filter nicotine content and each of the 36 constituents

Coefficient of determination R² derived from the calibration curves

Group	Smoke constituent	LTC	ULTC	Group	Smoke constituent	LTC	ULTC
	Tar	0.97	0.99		Formaldehyde	0.50	0.43
TNCO	Nicotine	0.96	0.99		Acetaldehyde	0.88	0.94
	Carbon monoxide	0.91	0.95		Acetone	0.90	0.95
Tobacco Specific Nitrosamines	NNN	0.96	0.98	Carbonyls	Acrolein	0.83	0.84
	NAT	0.94	0.99		Propionaldehyde	0.88	0.93
	NAB	0.92	0.99		Crotonaldehyde	0.82	0.87
	NNK	0.95	0.99		Methyl ethyl ketone	0.88	0.94
	1-Aminonaphthalene	0.92	0.95		n-Butyraldehyde	0.88	0.95
Polycyclic	2-Aminonaphthalene	0.89	0.90	Phenolics	Hydroquinone	0.93	0.98
Aromatic	3-Aminonaphthalene	0.93	0.97		Resorcinol	0.93	0.95
Hydrocarbons	4-Aminonaphthalene	0.93	0.97		Catechol	0.90	0.99
	Benzo(a)pyrene	0.97	0.98	Friendics	Phenol	0.78	0.88
	1,3-Butadiene	0.85	0.88		m/p-Cresol	0.83	0.92
	Isoprene	0.89	0.93		o-Cresol	0.87	0.93
Organic	Acrylonitrile	0.84	0.89	Nitrogen	Nitric oxide (NO)	0.91	0.94
Compounds	Benzene	0.89	0.93	Oxides	NOx	0.91	0.95
	Toluene	0.90	0.94	011	Ammonia	0.89	0.92
	Styrene	0.83	0.84	Others	Hydrogen cyanide	0.85	0.90

Except for formaldehyde, a strong correlation was found between the filter nicotine content and each of the 35 constituents in both types of cigarette ($R^2 = 0.78 - 0.99$).

MLEs to 35 constituents can be estimated using the filter nicotine content.

9/1

Experiment (i)

Validation of a method for estimating MLE using filter nicotine content

Experiment (ii)

Estimation of MLE to each constituent in low tar cigarette (LTC) and ultra-low tar cigarette (ULTC) smokers

2. Estimation of MLE in smokers

Study design

Subject number:
210 smokers
(LTC smokers: 105, ULTC smokers: 105)

✓ Inclusion criteria:

- Japanese male smokers
- Aged 21-49 years
- Smoking the same brand for at least 3 months, 10 or more cigarettes per day

✓ Smoking Condition:

Smoke their own brand of cigarettes ad libitum for 7 hours (10:30-17:30)

✓ Items investigated:

- Filter nicotine content
- Estimation of MLE to 35 validated constituents using the filter nicotine content

Congress2012 - Document not peer-reviewed by CORESTA

2. Estimation of MLE in smokers

X-axis: ULTC

Y-axis: Estimated MLE

Mean \pm SD

Estimated MLEs to all 35 constituents in ULTC smokers are statistically significantly lower than those in LTC smokers

3. Summary and Conclusion

Summary

Validation of a method for estimating MLE

Except for formaldehyde, MLEs to 35 constituents can be estimated using the filter nicotine content.

✓ Estimation of MLE to each constituent in smokers

Estimated MLEs to 35 constituents in ULTC smokers are lower than those of LTC smokers.

Conclusion

 The relationship between "machine yield" and "estimated MLE" Machine yield of 35 constituents under both ISO and HCI; ULTC < LTC
Estimated MLE to 35 constituents; ULTC < LTC

→ Machine yield and estimated MLE were correlated for both LTC and ULTC in this study.

Additional investigation

- Recently, some researchers have reported the "ratio value" as an index obtained by machine smoking.
- 1) Each constituent/nicotine ¹⁾.

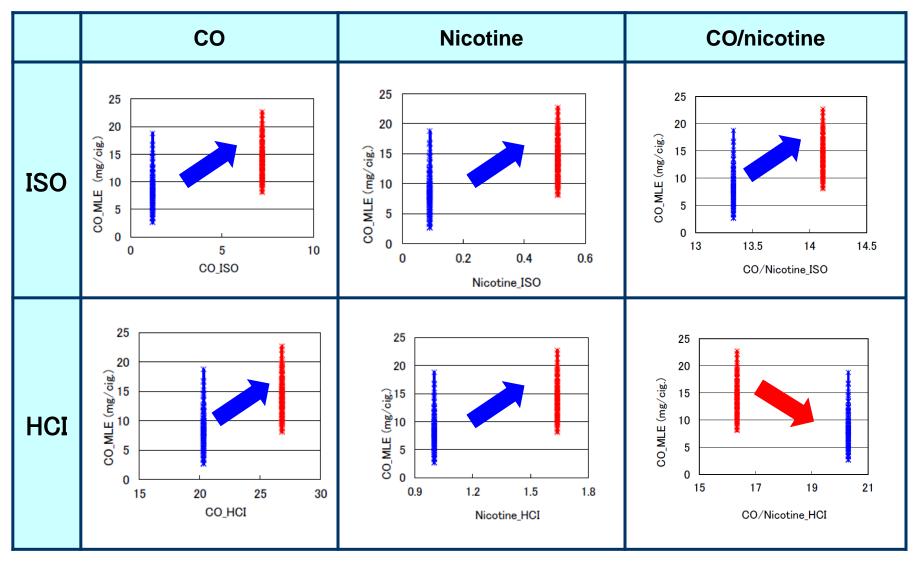
For machine yields in US cigarettes, the ratio value provided an inverse ranking of tar categories in many cases.

Each constituent : "Ultra-Lights"<"Lights"<"Full Flavor" Each constituent/nicotine : "Ultra-Lights">"Lights">"Full Flavor"

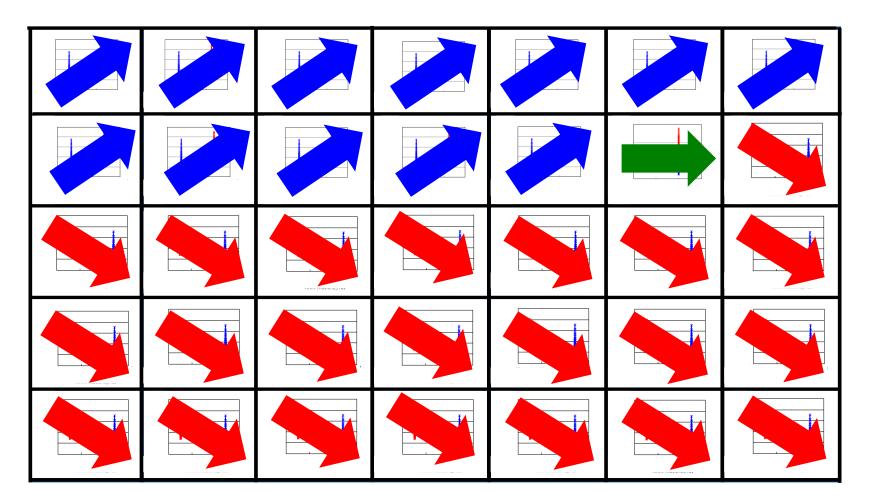
2) Tar/nicotine (T:N ratio)²⁾

The ratio value was affected by the smoking conditions.

Investigation of the relationship between "estimated MLE" and "ratio values; each constituent/nicotine and each constituent/tar" under ISO and HCI conditions.

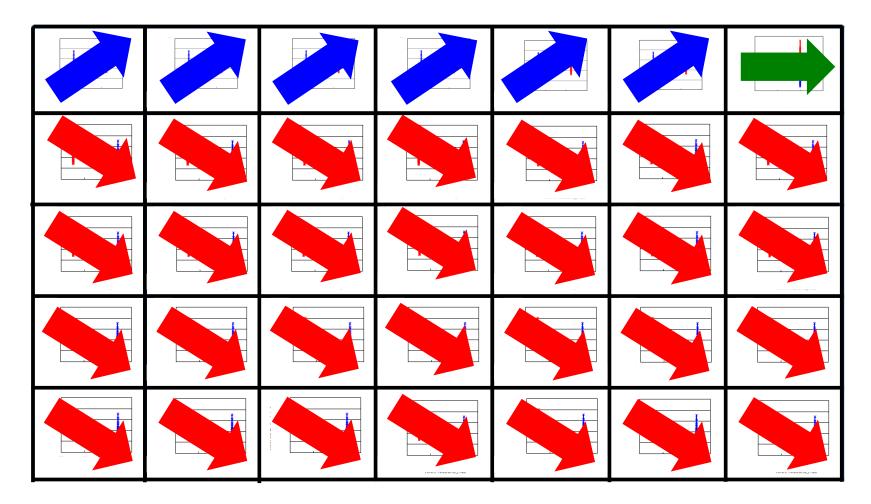

1)Bodnar et al. (2012) Regul Toxicol Pharmacol. 64: 35-42. 2)Nelson et al. (2011) Regul Toxicol Pharmacol. 61: S25-38

14/


Application of CO/nicotine under ISO and HCI

2012_SSPT18_Bito.pdf

* : LTC smokers * : ULTC smokers



Relationship between estimated MLE and each constituent/nicotine under ISO

Each constituent/nicotine under the ISO had an inverse relationship to estimated MLE in 22 of 35 constituents.

Relationship between estimated MLE and each constituent/nicotine under HCI

Each constituent/nicotine under the HCI had an inverse relationship to estimated MLE in 28 of 35 constituents.

Number of constituents which showed inverse relationship

Smoking condition	Ratio values obtained by machine smoking					
	Each constituent / nicotine	Each constituent / tar				
ISO	22	25				
НСІ	28	30				

In many cases, the order of ratio values (ULCT>LTC) have an inverse relationship to estimated MLE (ULCT<LTC).

In this study, only two cigarettes were used, LTC and ULTC. It is necessary to conduct further studies using other cigarettes in order to clarify the relationship between the estimated MLE and ratio values obtained by machine smoking.

18/[•]

Thank you for your attention !