Interactions between systemic neonicotinoids and hymenopteran parasitoids of the tobacco budworm

Sally Vann Taylor & Clyde E. Sorenson Department of Entomology North Carolina State University

2012_TWC67_Taylor.pdf

Justification & Description

The tobacco budworm, *H. virescens*, can reduce both yield and quality of harvested tobacco.

Photo C.E. Sorenson

Chemical treatment of the tobacco budworm can be problematic.

NC STATE UNIVERSITY

Photo University of Georgia

Biological control is one of our most important tactics.

Natural enemies of the tobacco budworm include:

NC STATE UNIVERSITY

Justification & Description

Cardiochiles nigriceps (aka Toxoneuron)

- Can utilize any larval instar.
- Food consumption in host halts in 5-6 days.
- 14-21 days to emergence.

Campoletis sonorensis

- Hosts past 3rd instar less suitable.
- Host growth and feeding significantly reduced immediately following parasitism.
- 7-9 days to emergence.

Imidacloprid is an insecticide that is used extensively in tobacco production. It has no activity against the tobacco budworm.

A potential drawback to the use of neonicotinoids is the threat that they pose to beneficial species such as hymenoptera including:

- Reduced foraging, activity and reproduction in honeybees (Decourtye 2004) and bumblebees (Mommaerts et al. 2010).
- Reduced host finding in parasitoids (Stapel et al. 2000).

Exposure route is different with endoparasitoids.

- M. Bock (2010) shows an increase in budworm infestations among plots treated with Imidacloprid.
- 2. A. Dhammi (2010) shows the movement of Imidacloprid from the heomolymph of the hornworm to its parasitoid wasp.
- 3. A. Muhammad (2010) shows a decrease in whitefly parasitism in cotton planted using a neonicotinoid seed treatment.

Objectives

- Assess the possible effects of systemic imidacloprid on the instance of budworm infestations and budworm parasitism in fluecured tobacco.
- 2. Quantify the toxicity of imidacloprid to both *C. nigriceps* and *C. sonorensis*.

- 1. Natural Infestations-Kinston, NC
- 2. Artificial Infestations-Rocky Mount, NC
 - 2 imidacloprid treatments (greenhouse spray and transplant water) and an untreated control.
 - Each treatment and the control contained 4 replications of 8 row plots

- 1. Natural infestations:
 - Infestation numbers were recorded from May 24th through June 13th.
 - Budworm larvae larger than second instar were collected from June 7-27th.
 - Larvae were observed in laboratory until either pupation or wasp emergence.

- 1. Natural infestations:
 - Infestations in all three plots were approximately 35% the week of June 7th.
 - By the end of larval collections, per plant:
 - 1.1148 2nd instar larvae were collected from the transplant water treatment
 - .9523 from the greenhouse treatment
 - .8837 from the untreated control.

- 1. Natural infestations:
 - Overall parasitism rates & parasitism rates by *C. nigriceps* showed no difference among treatments.
 - The parasitism rate for C. sonorensis was higher in the control.

Rate of Parasitism by C. nigriceps Rate of Parasitism by C. sonorensis

- 1. Artificial infestations:
 - 80 early second instar larvae were placed in each plot. They were collected for observation after 5 days of field exposure.

Percentage (

- 1. Artificial infestations:
 - Higher numbers of larvae were recovered in the treated plots
 - Parasitism rate was higher in the control, but not significantly.

Larval Recovery Rate

Artificial Infestation Parasitism Rates

Objective 1: First-year Greenhouse Studies

- Budworm larva were reared on either treated or untreated plants.
- Budworm larva were parasitized at the 2nd instar age and observed daily.

Objective 1: First-year Greenhouse Studies

 Rates of successful parasitism were significantly higher in the untreated controls for each species.

Successful Parasitism by C. nigriceps Suc

Successful Parasitism by C. sonorensis

Objective 2: First-year laboratory Studies

Topical LD50s were determined for each species.

Objective 2: First-year laboratory Studies

- C. nigriceps
- LD50=.8926 ug per insect (95%CI .77-1.15)

~54.179 mg/kg

 Hazard ratio=146.2
(50-2,500 Slightly to moderately toxic)

- C. sonorensis
- LD50=.00238 ug per insect

(95%CI .002-.0029)

- ~.9056 mg/kg
- Hazard ratio=54,674
- (>2,500 Dangerous)

Objectives for second year studies

- 1. Repetitions of greenhouse studies.
- 2. Determination of insecticide titer in plants and budworms.
- 3. Quantify the season-long level of budworm infestation.

Acknowledgements

Advisors:

Clyde E. Sorenson R. Michael Roe Hannah Burrack Jack Bacheler

References:

Available upon request.

Funding Sources:

Tobacco Research Commission E.G. Moss Fellowship Fred G. Bond Tobacco Scholarship Philip Morris Fellowship NIH Biotechnology Training Grant

Questions?

