





## APPROACHING THE FIRST STATION ON THE WAY TO CERTIFIED ORGANIC TOBACCO: (ALMOST) CHEMICAL-FREE TOBACCO

MILLI G.(1), MIELE S.(2), BARGIACCHI E.(2), ROMANI A.(3)

<sup>(1)</sup> Fattoria Autonoma Tabacchi (FAT), I-06012 Città di Castello (Italy)
(2) InterUniversity Consortium INSTM, I-50121 Firenze (Italy)
(3) Phytolab University of Firenze (Italy)

## GENERAL RULES OF CERTIFIED ORGANIC FARMING

- ➤ A sustainable agriculture with a responsible use of energy, water, soil, organic matter, air
- ➤ A biological-based, non GMO-agriculture, with limited use of external inputs
- A farming system targeted to the maintenance and enhancement of soil life, natural soil fertility and biodiversity

#### WHAT IS A CERTIFIED ORGANIC CROP

- ➤ It's a crop produced in a traced and tracked system, according to cropping rules excluding the use of (most of) the chemical inputs.
  - Why "most of"? Because, for example, sulphur, copper sulphate, mined potassium sulphate, etc., are "accepted products"
- Authorization is subdued to repeated controls carried out by domestic control organisms, according to a common EU's validation process
- ➤ Reg. (EC) 2007/834 strictly indicates how to operate "organic". Further restrictions can be posed by Regional Agencies for Agriculture or control organisms

# W A MIII pd

# HOW TO SWITCH TO CERTIFIED ORGANIC FARMING

- ➤ In general, the entire farm shall be managed in compliance with the requirements applicable to organic farming
- ➤ In very few cases a holding may be split up in clearly separated units, keeping land, production inputs and products separated for the conventional and organic units
- Switching to organic requires 2-3 years of conversion period. During this period, the grower operates in compliance with the requirements of the organic farming system, but the productions will be labeled only as "in-conversion products", not "organic products"

## THE RULES IN CASE OF USE OF EXTERNAL INPUTS

- ➤ All the external inputs shall be from organic production
  - This includes: seed and transplant seedlings!
- ➤ All the external inputs shall be natural or naturallyderived substances
- > Mineral nitrogen fertilizers shall not be used
- Only authorized fertilizers and crop protection products shall be used
- >The use of biodynamic preparations is allowed

#### THE SITUATION OF TOBACCO

- Although a progressive trend towards a general reduction in the use of chemical fertilizers and agrochemicals, tobacco still requires high fossil energy and agrochemicals inputs
- This intensive use has a negative impact on crop costs, the environment, and the entire tobacco production chain:
  - 1) at the sites where these agrochemicals are manufactured (energy, pollution)
  - 2) at the fields where tobacco is cropped (costs, pollution)
  - 3) during post-harvest processing (residues)

## MAJOR CONSTRAINTS TO CERTIFIED ORGANIC TOBACCO

- Higher production costs for burocracy, dedicated farms, expensive external inputs, weed, and sucker control, less consistency in good yield targets
- Questionable availability of <u>certified organic seed</u>
- Non compliance of <u>float-system</u> with the principles of organic agriculture as stated by UE (specific authorization?)
- Problems of correct management for Virginia Bright tobacco of a <u>Nitrogen fertilization</u> fully based on organic fertilizers (= Nitrogen curve release not always matching with crop requirements)
- > Problems to control some pests and diseases

#### WHAT'S ALREADY "ORDINARY" TECHNIQUE (VALID + COST-EFFICIENT)

- Seedbed (float system under greenhouse)
- In the field



#### WHAT HAS PROVED VALID (BUT PRESENTLY NOT COST-EFFICIENT FOR **CONVENTIONAL TOBACCO**

- Seedbed (float system under greenhouse)
- In the field

#### WHAT IS UNDER INVESTIGATION

- Crop protection



#### **SEEDBED:**

- Annual change of the used plastic materials: bed & cover films, trays, as prevention measure to limit diseases spreading and avoid chemical disinfection
- Greenhouse protection against insects with nets
- Baits for slugs with ferric phosphate
- Control of Blue mold with Copper derivatives (products authorized also for organic farming)



#### **SEEDBEED:**



RHIZOSPHERE BACTERIA/VA MYCORRHIZAL FERTILIZERS/TRICHODERMA SPP.

(Product labeled for organic farming, rates: 0.6 and 1.8 g/m²)

April 14, 2009

Uneven germination & spiral rooted plants...

May 11, 2009

...But no fertilizers and crop protectants







#### **SEEDBEED:**



## RHIZOSPHERE BACTERIA/VA MYCORRHIZAL FERTILIZERS/TRICHODERMA SPP. RESULTS

- Formulation and application technique should be finertuned to avoid uneven plant early growth
- However, at transplanting, plant growth and protection were beyond expectations, and comparable to control (chemically fertilized and protected plants)
- Until now, not for conventional tobacco (cost-efficiency)
- Anyway, disease control consistency should be monitored for more cycles before spreading this technique on large areas

#### GOOD FARMING PRACTICES TO CONTAIN TOBACCO FERTILIZATION COSTS

- Frequent soil/plant/water/fertilizer tests
- Green manuring
- > Efficient fertilizers and application (plant placement) to reduce fertilizer rates
- > Use of digested effluent from anaerobic digestion plant



### FERTILIZER PLANT PLACEMENT



GRANULE SIZE: 0.8-1.2 mm Ø
TYPICAL PRODUCT: 11.46.0+2 Zn



#### FERTILIZER PLANT PLACEMENT



TYPICAL PRODUCT: 41.46.0+2.Zn

SWITCHING TO SOME AUTHORIZED FORMULATION FOR ORGANIC FARMING

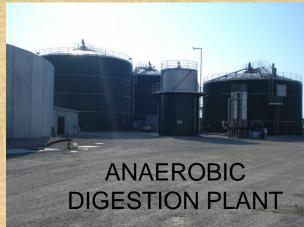
# 13 - Document not peer-reviewed by COREST

## USE OF DIGESTED PHASE IN PARTIAL REPLACEMENT OF FOSSIL FERTILIZERS

| SILAGE CORN YIELD T/HA                                        |        | 51.8  |       |
|---------------------------------------------------------------|--------|-------|-------|
| DIGESTED PHASE                                                | Liquid | Solid | TOTAL |
| T/Ha                                                          | 23.1   | 7.0   | 30.1  |
| Total N %                                                     | 0.40   | 0.28  |       |
| Total P <sub>2</sub> O <sub>5</sub> %                         | 0.25   | 0.16  |       |
| Total K <sub>2</sub> O %                                      | 0.70   | 0.35  |       |
| N kg/ha (50% yearly availability)                             | 46     | 10    | 56    |
| P <sub>2</sub> O <sub>5</sub> kg/ha (50% yearly availability) | 29     | 6     | 35    |
| K₂O kg/ha (50% yearly availability)                           | 81     | 12    | 93    |

## **OPERATION SCHEDULE**

Biomass crop


Harvest of biomass crop

Distribution of solid and liquid waste from biogas

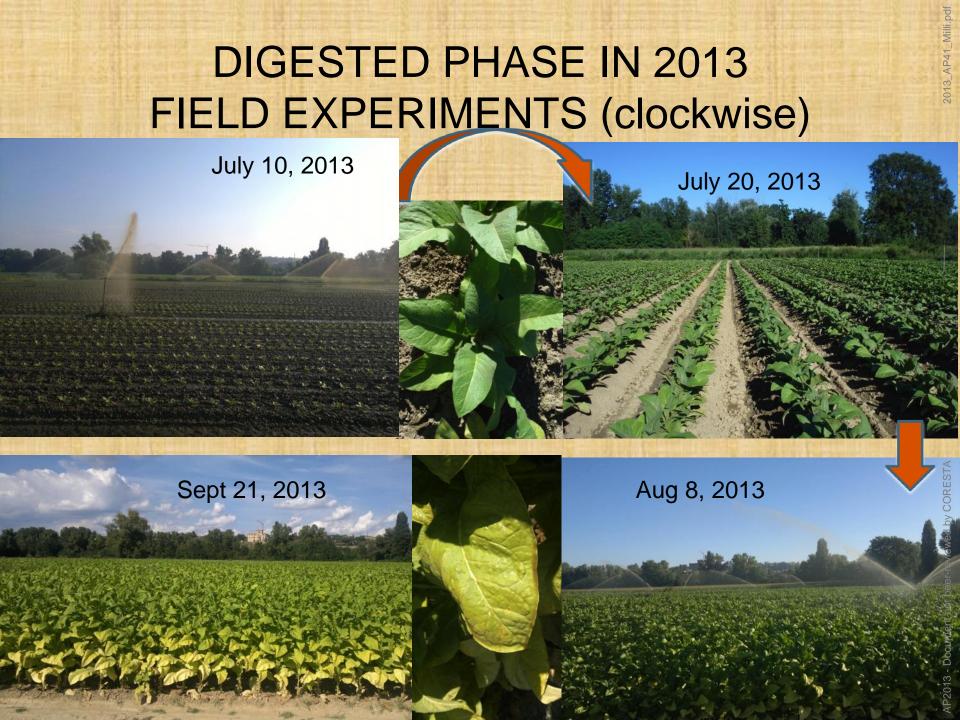
Transplanting

Fertilization of Tobacco with liquid waste










#### DIGESTED PHASE IN 2013 FIELD EXPERIMENTS

| Date       | Quantity |     | Type                    | N  | P2O5 | K <sub>2</sub> O |
|------------|----------|-----|-------------------------|----|------|------------------|
| June 07-13 | Kg/ha    | 40  | Umostart (5/20/0) 2     |    | 8    |                  |
| June 15-13 | m³/ha    | 10  | Liquid Digested Phase 2 |    | 12.5 | 35               |
| June 27-13 | Kg/ha    | 150 | Potassium Sulphate      |    |      | 75               |
| Jul 10-13  | m³/ha    | 15  | Liquid Digested Phase   | 30 | 19   | 53               |
| Aug 08-13  | m³/ha    | 10  | Liquid Digested Phase   | 20 | 12.5 | 35               |
|            |          |     | Total Units             | 72 | 52   | 198              |









#### WEED AND INSECT CONTROL

- Weed: "false sowing" and tillage after transplanting
- Aphids: tobacco fields bordered with sunflower (in 2013, no need of colonization with beneficial insects)
- Flea Beetles:
  Presently no biological control
- Cut worms, bud worms:
  Bacillus Thuringiensis





#### NEMATODE CONTROL

- Natural tannin extracts to control nematodes:
  - In transplant water at 4-5% concentration
  - 4 treatments in microirrigation (in total: 30 kg/ha)





#### DISEASE CONTROL

#### Blue mold

There is no biological product with a real efficacy.

This year, after transplanting, we had a dry season: two treatments with Bion MX were sufficient for Blue Mold control (July 16 & 30)

The research team at INSTM is presently investigating on grapes the use of polyphenols + absorbing clays to control fungal diseases: a possible answer also for tobacco?

#### **ENERGY SAVING**

#### **BARLEY: A WINTER CROP FOR BIOMAS PRODUCTION**

- Cover crop
- Extra income for farmers (around 500 net €/ha)
- Positive balance between Methane gas production and curing consumption
- Positive balance between Electric Energy production and curing consumption

| CROP    | Kg/ha  | METHANE<br>mc (+) | METHANE<br>mc (-) | ELECTRIC<br>ENERGY<br>Kw (+) | ELECTRIC<br>ENERGY<br>Kw (-) |
|---------|--------|-------------------|-------------------|------------------------------|------------------------------|
| BARLEY  | 30.000 | 23.285            |                   | 93.130                       |                              |
| TOBACCO | 3.000  |                   | 2.358             |                              | 3.555                        |
| BALANCE |        | + 20.927          |                   | + 80.144                     |                              |

#### **FINAL RESULTS**



- > Lugs and Cutters have been harvested;
- > Leaf are under curing:
- > Harvest will be completed next week
- > Yield, quality, Nicotine and Sugars content will be defined sooner

#### CONCLUSIONS

- Our efforts toward a significant reduction in the use of external chemical input on tobacco are in progress;
- They produced important results for fertilization and some pest control, with better use of natural resources; improvement of tobacco LCA and increased crop costefficiency;
- However, switching from a full chemical to a mixed chemical-biological strategy to feed and protect tobacco is only the first step toward certified organic tobacco, but it's still far away (market expectation and burocracy);
- Certified organic tobacco has higher production costs and some technical problems not solved yet. We are working on these problems to prepare a trustable roadmap for the growers, but market expectations will make the difference

#### THANK YOU FOR YOUR ATTENTION



2013\_AP41\_Milli.pd