CORESTA CONGRESS QUEBEC, CANADA – AP 06

13 October 2014

RESISTANT CULTIVARS: A SUSTAINABLE MANAGEMENT OPTION FOR THE TOBACCO ROOTKNOT NEMATODE IN ZIMBABWE

<u>Tafadzwa Mahere</u>, Privilege Makunde, Cleopas Chinheya, Susan Dimbi

TOBACCO RESEARCH BOARD

KUTSAGA

Presentation Outline

- 1. Introduction
- 2. Main objective
- 3. Materials and methods for field trial
- 4. Results and Discussion
 - i. Greenhouse bioassays
 - ii. Yield Field assessments (Stalk heights; Final gall rating)
 - iii. and Grading Index
- 5. Conclusion
- 6. Acknowledgements

Introduction

- Root-knot nematodes (RKNs), Meloidogyne spp. are major pests threatening tobacco production worldwide;
- In Africa the most dominant species are
 M. javanica, M. incognita and M. arenaria;
- Yield losses of 30% or more in tobacco have been attributed to this pest;

Introduction (cont'd)

- In Zimbabwe RKNs had ceased to be a major challenge to tobacco growers;
- This was due to decades of research on the management of this pest from which several nematicides were recommended;
- The recent banning of a wide range of nematicides has necessitated the need to find alternatives;

Introduction (cont'd)

- Greener nematicides, Katambora (Rhodes) grass and RKN-resistant varieties;
- Since 1954, TRB developed an array of RKN-r cultivars;
- However, the wide range of effective nematicides negated the plant resistance option;
- Additionally, no documentation of the performance of KRK varieties.

Main Objective

 Evaluate the performance of Kutsaga's most popular RKN-resistant varieties grown without nematicides, under high nematode pressure

THE FIELD TRIAL

Study Area: Kutsaga Research Station, Harare, Zimbabwe

Location 17 ° 55′ S; 31 ° 08′ E

1479 m above sea level Altitude

Mean annual 750 - 950 mm

rainfall

Mean summer 32°C

temp.

18°C Mean winter

temp. Soils Generally light textured sandy loams, which are deep and permeable

Materials and Methods

Procedure

- Six KRK26, KRK29, KRK64, KRK66 T71 and T72 all bred for high resistance to RKN used;
- A RKN-susceptible cultivar, K M10 included;
- Planting done in mid-October;
- To enable comparison the trial was replicated in EDB fumigated plots.

Design

- A split-plot design used;
- Fumigation Main plot and Variety as the Subplot;
- Each plot consisted of three rows of 32 plants per row;
- Spacing: inter-row 1.20 m and 0.56 m in-row;
- The middle row was used for assessment.

Measurements

- Soil samples collected at 3, 8, 13 & 18 w.a.p.;
- Added to 12 cm dia. pots in the greenhouse;
- 3 week-old tomato plants
 Lycopersicon esculentum Rodade transplanted;
- Plants pulled and root-galling assessed 5 w.a.p.

ment not peer-reviewed by COREST,

2. Stalk height assessments

 Between 8 - 13 w.a.p. plant height measurements were done for all plants.

3. Tobacco root galling scale

3. Tobacco root galling scale

4. Yields

Leaves
sequentially
reaped and
cured

- Genstat Statistical Package (Version 17)
- ANOVA
- 5 % level of significance
- LSD's post-hoc test was performed for the multiple comparisons.

RESULTS

1. Monitoring of Nematode population trends

2. Stalk heights at 8/9 w.a.p. in 2012/2013

■ KM 10 ■ K RK66 ■ K RK64 □ T 71 ■ T 72 ■ K RK26 ■ K RK29

■KM 10 ■K RK66 ■K RK64 □T 71 ■T 72 ■K RK26 ■K RK29

Key Observations

Fumigated and Unfumigated plots – KM10

UNFUMIGATED

FUMIGATED

Fumigated and Unfumigated plots – K RK66

Fumigated and Unfumigated plots – T72

Yield and Quality

- Plants in fumigated plots established and grew faster for the first 8 weeks;
- High levels of resistance shown by K RK varieties, even without fumigation comparable yields were obtained;
- In 2012/13 no fertilizer leaching adjustments after incessant rains resulted in low yields (< 2 100 kg/ha)
- Varieties included in study have potential to yield over 4 500 kg per hectare;

Summary of results cont'd

- KM10 was lowest yielder even in fumigated plots
- Higher galling in KM10 compared with K RK varieties;
- K RK64, T71 and T72 had lowest galling and thus rated highly RKN-R, while K RK66 had higher yields that compensated for the moderate galling.

Conclusion

- Plant resistance is an effective nematode management option for the Zimbabwean tobacco grower.
- It is recommended they be used in an IPM setting in combination with recommended cultural control measures and the available greener nematicides.

Acknowledgements

TRB Board And Management
 For Financial Support

Kutsaga PHS Staff

