Analysis of sugars and myoinositol in tobacco with a new LC/MS/MS procedure

> S. C. Moldoveanu and W. A. Scott R.J. Reynolds Tobacco Co.

Background

- The levels of sugars (non-polymeric carbohydrates) in tobacco are important for leaf characterization.
- Analyses of sugars such as glucose, fructose, and sucrose is typically performed using HPLC.
- Sugar molecules do not have chromophors and the detection is performed with a refractive index detector or a pulsed amperometric detector (PAD), isocratic separation, and identification based only on retention time [1-3].
 - 1. W. Ellefson, Curr. Protocols. Food Anal. Chem., 2002, E1.2.1-E1.2.9.2
 - 2. M. Salman, M. T. Alghamdi, S. A. Bazaid, E. S. Abdel-Hameed, *Arch. Appl. Sci. Res.*, 3 (6) (2011) 488-496.
 - 3. Thermo Scientific, *Dionex Application Brief* 127.
- A more recent LC/MS measurement in APCI mode of sugars requires a post column solvent addition.
 - 4. H. Kumaguai, Agilent Application note 5988-4236EN, 2001.

Problems and solutions regarding MS analysis of carbohydrates

- Carbohydrates have low propensity to form ions in either positive or negative mode.
- Carbohydrates have the tendency to form clusters with alkaline ions such as Na⁺, K⁺, and with NH₄⁺.
- Detection of small molecular ions such as Na⁺ (atomic weight 23) or K⁺ (atomic weight 39) is difficult using LC/MS/MS instruments.
- Cs⁺ also forms clusters with carbohydrates and has the atomic weight 133.

Method description (sample extraction)

- A ground tobacco sample of 100 mg is weighed with precision of 0.1 mg and placed in a 50 mL vial.
- To this sample, 25 mL of water is added and the sample is extracted for 30 min on a wrist action shaker.
- A portion of the resulting extract is filtered through a 0.45 μ m PVDF filter and 1 mL placed in a 2 mL vial for analysis. The samples are stable for at least 48 hours at 15 °C.
- To this solution are added 25 μL of a solution containing 2 mg/mL rhamnose (rhamnose is not present, or is at low trace level in tobacco).

Method description (HPLC separation)

- The column was a HILIC type YMC-Pack Polyamine II (YMC America, Inc., Allentown, PA, USA).
- The HPLC system was a 1200 Ser. Agilent HPLC with degasser, dual pump (high pressure mixing), autosampler (samples kept at 15 °C), and column compartment (kept at 20 °C).
- The separation used isocratic conditions and the mobile phase was 67% CH₃CN and 33% H₂O that has 80 mM Cs(CH₃COO).
- The flow rate through the column was 1 mL/min. However, this flow is too high for the MS/MS detection and a split flow was used, such as only 250 μL/min flow was sent to the MS/MS detector, while 750 μL/min flow went to waste.
- The injection volume for the analysis was 5 μL.

Method description (MS/MS parameters)

• API-5000 triple quadrupole mass spectrometer (AB Sciex, Framingham, MA, USA), working in multiple reaction monitoring (MRM) mode with the following parameters:

Parameter	Value
Polarity	Positive
Collision gas (CAD)	10 mL/min
Curtain gas (CUR)	40 mL/min
Ion source gas 1 (GS1)	45 mL/min
Ion source gas 2 (GS2)	45 mL/min
Ion spray voltage (IS)	5000 V
Temperature (TEM)	95 °C
Interface heater (Ihe)	on
Declustering potential (DP)	27.0 V
Entrance potential (EP)	10.0 V
Collision energy (CE)	15.0 V
Collision cell exit potential (CXP)	11.0 V
Acquisition time per ion	100 ms
Total acquisition time	20 min

Method description (ions used for measurement)

No.	Compound	Precursor ion	Product ion
1	C5 sugars	283.0	133.0
2	Rhamnose	297.0	133.0
3	C6 sugars and inositol	313.2	133.0
4	C6 sugar alcohols	315.2	133.0
5	Disaccaharides (2 x C6)	475.2	133.0
6	Sucralose	529.0	133.0

Compounds subject to quantitative analysis

Example chromatogram for a set of standards

Variation in time of the peak area counts for the internal standard (rhamnose)

Quantitation of sugars

- Quantitation is performed using calibration curves.
- The calibration curves can be either concentration of analyte vs. area count, or concentration of analyte vs. normalized area count (by I.S. area). Example of glucose is given below:

Equations for the quantitation of several analyzed compounds.

Compound	Conc. range	Eq. conc. vs. area	R ²	Eq. conc. vs. norm. area	R ²
Fructose	2.34 - 300 mg/mL	y = 3.1851e-14x ² + 2.2889e-6x	0.9985	$y = 9.8229x^2 + 44.062x$	0.9993
Glucose	1.17 - 150 mg/mL	y = 2.1811e-14x ² + 3.9813e-6x	0.9996	y = 5.6955x ² + 74.821x	0.9998
Myo-inositol	1.17 - 150 mg/mL	y = 2.8117e-14x ² + 3.8556e-6x	0.9995	y = 8.0148x ² + 63.753x	0.9995
Sorbitol	1.17 - 150 mg/mL	y = 2.0797e-14x ² + 1.5151e-6x	0.9988	$y = 6.4201x^2 + 28.882x$	0.9999
Sucrose	1.17 - 150 mg/mL	y = 7.1834e-15x ² + 2.1440e-6x	1.0000	y = 1.9364x ² + 40.245x	0.9995
Sucralose	0.39 - 50 mg/mL	y = 3.5585e-14x ² + 3.4924e-6x	0.9997	$y = 8.9022x^2 + 65.332x$	0.9998
Xylose	0.39 - 50 mg/mL	y = 1.1207e-13x ² + 5.7044e-6x	0.9975	y = 29.48x ² + 106.81x	0.9992

Other compounds that can be analyzed by this LC/MS/MS method

Separation of four inositols

(Standards at 75 $\mu\text{g/mL}$).

Tobacco analyzed by the LC/MS/MS method

No	Tobacco	Year	Description	Curing
	type			
Tob.1	FC L c (1)	2008	Eastern NC belt, lower stalk (lug) flue-cured	cured
Tob.2	FC U c (1)	2008	Eastern NC belt, upper stalk (leaf & some tips) flue-cured	cured
Tob.3	FC L c (2)	2009	South Carolina belt, lower stalk (lug) flue-cured	cured
Tob.4	FC U c (2)	2009	South Carolina belt, upper stalk (leaf & some tips) flue-cured	cured
Tob.5	FC off L c	2006	Brazil, lower stalk (lugs & primings) flue-cured	cured
Tob.6	FC off U c	2006	Brazil, upper stalk (leaf & tips) flue-cured	cured
Tob.7	Bu L c (1)	2007	Kentucky & Tennessee, lower stalk (flyings & cutters) burley	cured
Tob.8	Bu U c (1)	2007	Kentucky & Tennessee, upper stalk (leaf) burley	cured
Tob.9	Bu L c (2)	2008	North Carolina & Virginia, lower stalk (flyings & cutters) burley	cured
Tob.10	Bu U c (2)	2008	North Carolina & Virginia, upper stalk (leaf) burley	cured
Tob.11	Bu off L c	2008	Malawi, lower stalk (flyings & cutters) burley	cured
Tob.12	Bu off U c	2008	Malawi, upper stalk (leaf) burley	cured
Tob.13	O Sa U c	2007	Turkey, good quality middle to upper stalk, Samsun Oriental	cured
Tob.14	O Iz U c	2005	Turkey, good quality middle to upper stalk, Izmir Oriental	cured
Tob.15	Commer. A	2010	Commercial cigarette A ("tar" 10.5)	cured

Conclusions (on the method)

- A new method for the analysis of several monosachharides, myo-inositol, sorbitol, sucrose, and sucralose using MS/MS detection has been developed.
- The method can be extended for the analysis of other carbohydrates.
- The separation is performed on a HILIC type column, YMC-Pack Polyamine II (YMC America, Inc., Allentown, PA, USA) with isocratic separation.
- The method has very good precision, sensitivity, and accuracy, and allows positive identification.
- The method can be successfully used for the analysis of tobacco samples.

Conclusions (on the tobaccos)

- The "profile" of sugars and even their actual levels do not differ too much from the lower stalk (lug) and upper stalk (leaf & some tips) of the plant.
- The burley tobaccos, as expected, are significantly lower in sugars and myo-inositol compared to the flue cured tobaccos.
- Differences that can be considered significant can be seen among the tobaccos of the same type but cultivated in different regions.
- The two Oriental tobaccos were very different regarding the level of sugars and myo-inositol.