Real-Time Puff-by-Puff Analysis of E-Cigarette Aerosol using GC-MS

Chorng B. Huang and Naren Meruva

Altria Client Services 601 East Jackson St., Richmond, VA 23219

C2014(68) - Document not peer-revie

Background

- E-cigarette formulations and aerosols typically contain propylene glycol (PG), glycerin, water, nicotine and flavors
- There is a need for rapid prototype evaluation of e-cigarette aerosol composition to:
 - Measure formulation components on a puff-by-puff basis
 - Evaluate formulation changes
 - Explore device configuration changes

Objective

Develop an automated puff-by-puff detection system for real-time analysis of e-cigarette aerosol to better understand how these devices perform during use.

<u>Requirements</u>:

- Real-time whole aerosol analysis
- Require no sample preparation
- Use one e-cigarette device per analysis
- Monitor analytes on a puff-by-puff basis
- Report data to compare prototype aerosols to a control product

RC2014(68) - Document not peer-revie

Overview

System Configuration

Whole aerosol collection

Methodology

- Puffing/Gas Chromatography Mass Spectrometry (GC-MS) parameters
- Carry-over between puffs
- Instrument precision

Applications:

- Formulation and device changes
- Prototype performance during battery life
- Semi-quantitative analysis of single puff yield

Real-Time Puff-by-Puff GC-MS System

Real-Time Puff-by-Puff GC-MS System

GC Inlet

MS Detector

No chromatographic separation and retention of compounds

Real-Time Puff-by-Puff GC-MS System

TSRC2014(68) - Document not peer-reviewed

Puff-by-Puff Aerosol Sampling

Sampling Mode

Injection Mode

Puff-by-Puff Aerosol Sampling

Back Flush Mode

RC2014(68) - Document not peer-revie

Analytical Method

Puffing Parameters:

- Puff volume 55 mL
- Puff duration 4 seconds
- Puff frequency 30 seconds
- Puff profile Square wave

GC-MS Parameters:

- 2 mL aerosol sample injection
- 450:1 split ratio
- Inlet temperature 220 °C
- Sampling valve at 200 °C
- 10 m x 0.25 mm ID guard column at 250 °C
- Ion source at 240 °C, transfer line at 250 °C

Chromatograms – PG and Glycerin

Puffs 1-50
Propylene Glycol,
m/z=76

Puffs 1-50 Glycerin, m/z=92

Chromatograms - Nicotine and Menthol

Puffs 1-50 Menthol, m/z=138

Puffs 1-50 Nicotine, m/z=84

Nicotine Carry-Over Between Puffs

Note: The red bars are the puffs without e-cigarette

Low nicotine carry over (<3%) observed between puffs

Puff-by-Puff Nicotine – Method Precision

The puff-by-puff method precision (%RSD) is < 10%

Formulation Change: Cumulative Nicotine (1-20 puffs, N=2)

Note: A single device was used with different nicotine loading

Device Change: Puff-by-Puff Nicotine Profile Different Prototypes/Same Formulation

*prototypes differ by battery size and cartridge design

Same formulation in different devices results in varying yields

Prototype Analysis -Puff-by-Puff Nicotine Charged Battery and New Cartridge

Approximately 90 puffs delivered using this prototype device

'SRC2014(68) - Document not peer-reviewed

Single Puff Nicotine Yield

Nicotine yield can be estimated using a single point calibration

:2014(68) - Document not peer-reviewe

Summary

- Puff-by-puff GCMS is a rapid screening method for ecigarette prototype characterization
- The automated real-time method offers high selectivity, sensitivity and precision for measurement of e-cigarette aerosol composition using a limited number of prototypes
- The method is capable of monitoring formulation components in multiple puffs of e-cigarette whole aerosol

