

Achieving a Consistent Test for Different E-Cigarette Products

Michael Connor Borgwaldt KC

- What we know from 2013
- What Changed in 2014
- Puff Start Up Delay
- Base Line Reference
- Consistent Flow, Longer Puff
- Normalized Puffing Times

- What we know from 2013
- What Changed in 2014
- Puff Start Up Delay
- Base Line Reference
- Consistent Flow, Longer Puff
- Normalized Puffing Times

2013: What did we discover

- A square wave puff triggers all products equally
 - Required flows ranged from 4.83 23.5ml/sec
- Maximum Puff durations allowed are designed in
 - Ranging from 4sec unlimited
- Reducing the Puff Interval
 - Increases the delivered Total TPM
- Increasing the Puff Duration
 - Increases the delivered Total TPM

E-Cig Brand Characteristics 2013

Brand	Trigger ml/sec	Max Puff Duration
Brand 1	4.83	6
Brand 2	6.17	8
Brand 3	8.17	4
Brand 4	8.83	5
Brand 5	10.17	None
Brand 6	23.50	None

- What we know from 2013
- What Changed in 2014
- Puff Start Up Delay
- Consistent Flow, Longer Puff
- Normalized Puffing Times

E-Cig Brand Characteristics 2014

Brand	Trigger ml/sec	Max Puff Duration	Trigger Change	Max Puff Change
Brand 1	4.75	7.07		
Brand 2	5.28	6.87	-0.89	-1.13
Brand 3	5.80	5.12	-2.37	+1.12
Brand 4	6.14	6.00	-2.69	+1.00
Brand 5	8.22	5.90	-1.95	+/-5.90
Brand 6	8.14	4.27		

- What we know from 2013
- What Changed in 2014
- Puff Start Up Delay
- Base Line Reference
- Consistent Flow, Longer Puff
- Normalized Puffing Times

Startup Delay

■ Differences in time between the puff starting and vapor being generated

Newly Observed Brand Characteristic

Brand	Trigger ml/sec	Max Puff Duration	Start Delay
Brand 1	4.75	7.07	0.43
Brand 2	5.28	6.87	0.40
Brand 3	5.80	5.12	0.92
Brand 4	6.14	6.00	0.75
Brand 5	8.22	5.90	0.41
Brand 6	8.14	4.27	0.33

- What we know from 2013
- What Changed in 2014
- Puff Start Up Delay
- Base Line Reference
- Consistent Flow, Longer Puff
- Normalized Puffing Times

55/3/30 TPM

TSRC2014(68) - Document not peer-reviewed

2014 Brand TPM Levels

TMP Pad vs Cig

TSRC2014(68) - Document not peer-reviewed

- What we know from 2013
- What Changed in 2014
- Puff Start Up Delay
- Base Line Reference
- Consistent Flow, Longer Puff
- Normalized Puffing Times

TPM per Sec

TPM per Sec Normalized for Startup Delay

TSRC2014(68) - Document not peer-reviewed

TPM per Second

TPM per Second Normalized for Startup Delay

TPM per Second

TPM per Second Normalized for Startup Delay

Conclusions

Conclusions

- Adjusting the Yield per second for the startup delay, produces a small improvement on reaching consistent TPM with a shorter puff.
- Increasing the Volume and Duration quickly level off the TPM per seceond rate.
- The longer consistent flow puff, produces a less variable Total TPM delivery.

Next Steps

■ Do longer puff at a lower flow, still produce a reduction in SD?

Other Observations

Saturation of the CFP can be a problem for higher yield samples.

Acknowledgements

Jeremy Jones Whitley Lee

Thank You For Your Attention

Any Questions?