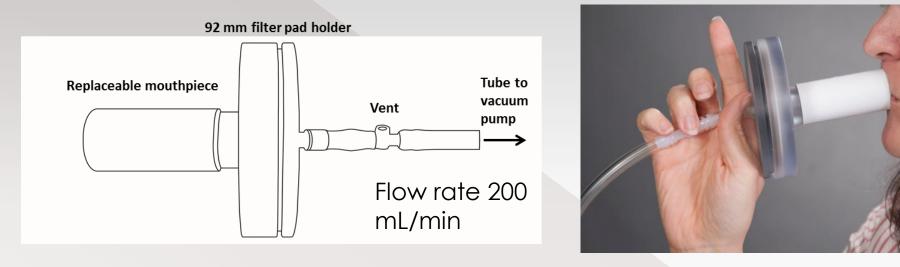


Comparison of Select Analytes in Exhaled Aerosol from E-cigarettes with Exhaled Smoke from a Traditional Cigarette and Exhaled breaths

Presenter: Dr. Tim Smith Project Lead/author: Gerald A. Long Project Sponsor: Dr. Rob Stevens

Organization

Project scope

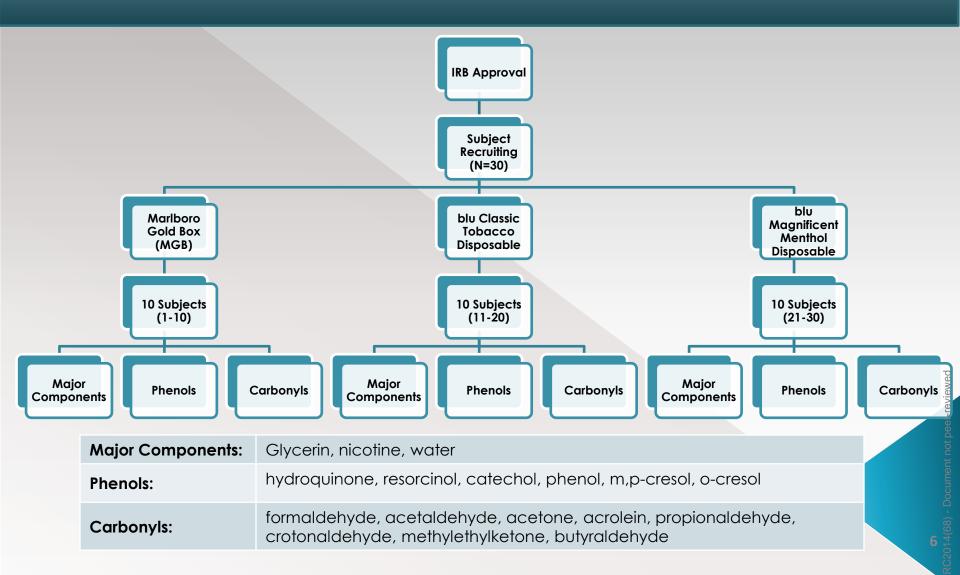

- Exhaled smoke from conventional cigarettes
- E-cigarette emissions
- Project overview
 - Study considerations
 - Experimental design
 - Work flow and sampling
 - Analytes and methods
- Results Summary
- Acknowledgments

Background: e-cigarette emissions

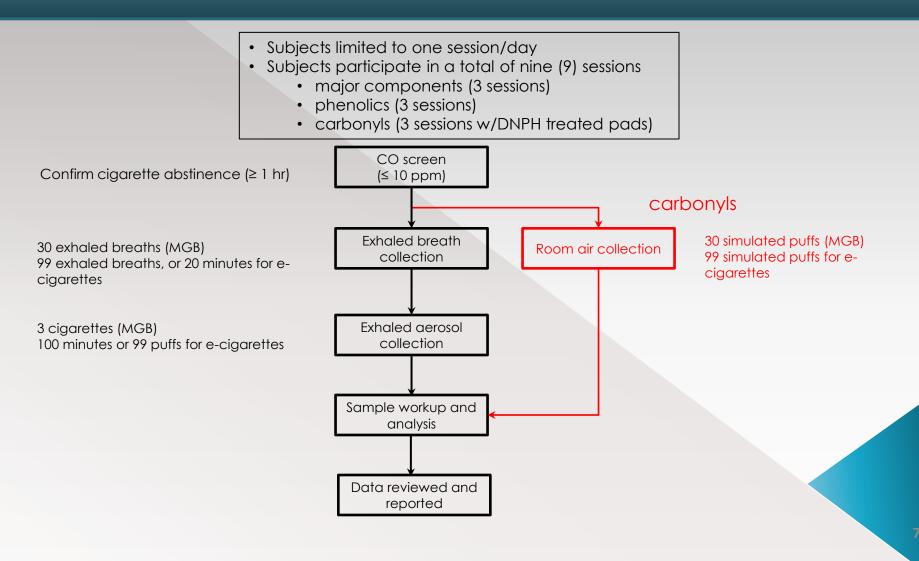
- Several studies have reported low levels of carbonyls in machine generated e-cigarette aerosols
- Cresols observed in headspace of an e-cigarette
- "Passive vaping" has been suggested as a potential bystander risk
- Baseline levels of constituents present analytical challenges
- Published results for the composition of exhaled ecigarette vapor is deficient
 - Exhaled e-cigarette aerosol major components and mass balance
 - Compare phenolics and carbonyls in exhaled aerosol from a conventional cigarette to exhaled aerosol from e-cigarettes

Background: Applying conventional cigarette methodology

Vacuum-assisted filter pad collection



Same approach used for quantitation of benzene, toluene, carbonyls, phenolics, PAH, TSNA in environmental tobacco smoke.

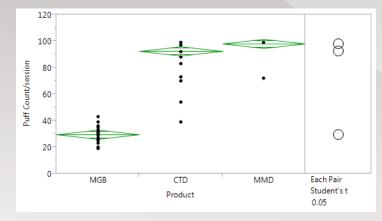

Project considerations

- Variability between subjects
 - Multiple subjects and replicates
- Suitable blanks
 - Exhaled breaths and room air (carbonyls)
- Anticipated low/ND levels of analytes (especially e-cigarettes)
 - Establish method limits and capabilities

Design of Experiment

Session workflow and sampling

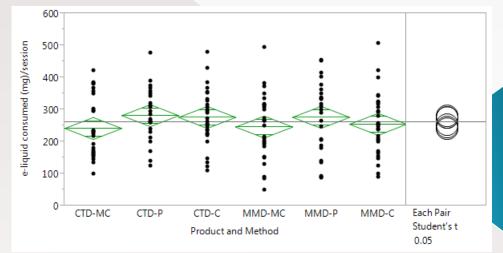
SRC2014(68) - Document not peer-reviewed


Methods: Quantitation Limits & Method Uncertainty

Analyte		Method	LOD	LOQ	Accuracy (%)	Precision (%)
Major Comp.	Nicotine	GC-MS	0.69	4.86	108	2
	Glycerin	GC-FID	0.0059	1.51	101	2
	Water	KF	ND	31	99	0
Phenolics	Hydroquinone	UPLC-FLR	0.37	2.00	113	2
	Resorcinol	UPLC-FLR	0.06	0.40	109	2
	Catechol	UPLC-FLR	0.47	2.00	114	2
	Phenol	UPLC-FLR	0.09	0.32	108	2
	m,p-Cresol	UPLC-FLR	0.60	4.00	110	2
	o-Cresol	UPLC-FLR	0.16	1.00	113	1
Carbonyls	Formaldehyde	UPLC-PDA	0.10	12.45	97	0
	Acetaldehyde	UPLC-PDA	0.39	5.20	96	1
	Acetone	UPLC-PDA	0.61	13.64	96	3
	Acrolein	UPLC-PDA	0.13	12.34	97	0
	Propionaldehyde	UPLC-PDA	0.21	1.89	98	2
	Crotonaldehyde	UPLC-PDA	0.21	2.17	95	1
	Methylethylketone	UPLC-PDA	0.24	2.06	97	2
	Butyraldehyde	UPLC-PDA	0.18	5.30	95	1

All units are µg except glycerin and water (mg). ND - LOD for water was not determined. Instrument methods based on modified ISO 17025 conventional cigarette smoke analysis

Results: Puff count and e-liquid consumed


Important considerations: (1) How many puffs were taken by product type, and (2) was a consistent amount of e-liquid consumed across study participants?

Puff Count/session MGB 30 CTD 92 MMD 98

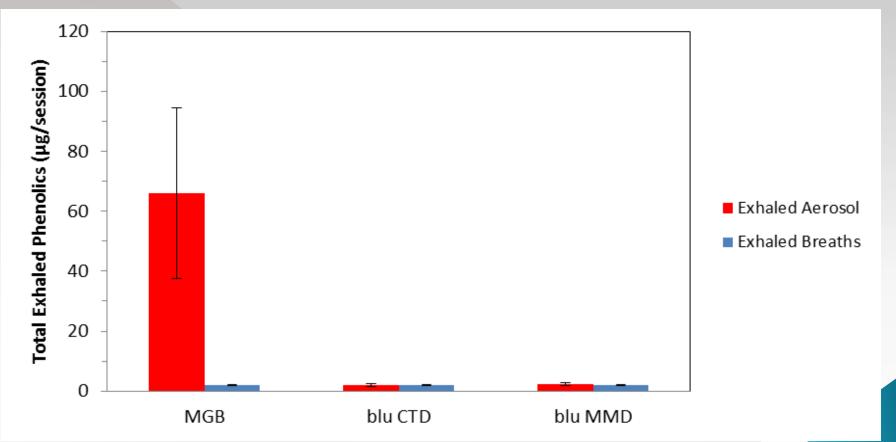
e-liquid consumed/session

Analyte	blu CTD	blu MMD	
Major Components (-MC)	242	246	
Phenolics (-P)	282	277	
Carbonyls (-C)	276	255	

Results: Distribution and mass balance of exhaled e-cigarette aerosol

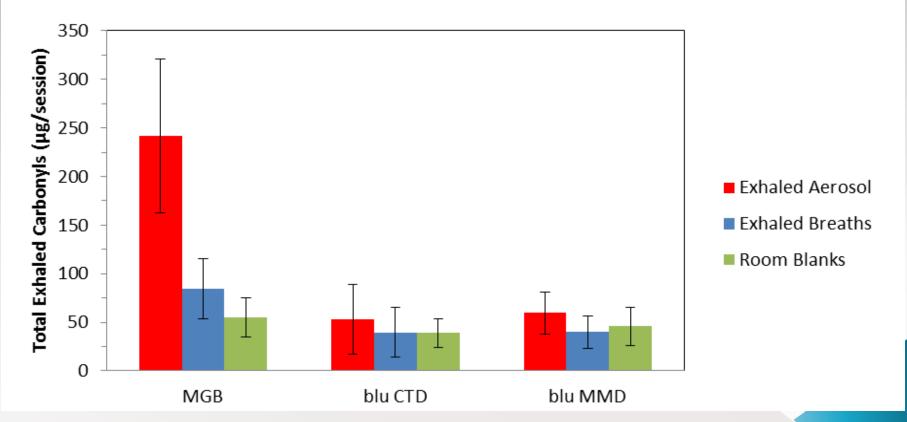
Average mass balance for nicotine, glycerin and water in exhaled aerosol from the conventional cigarette was $(83 \pm 21\%)$.

Data treatment – Example data


MGB			blu CTD			<u>blu</u> MMD		
Subject	Acetaldehyde	Hydroquinone	Subject	Acetaldehyde	Hydroquinone	Subject	Acetaldehyde	Hydroquinone
1	227.6	70.6	11	<loq< td=""><td><lod< td=""><td rowspan="3">21</td><td>16.7</td><td><lod< td=""></lod<></td></lod<></td></loq<>	<lod< td=""><td rowspan="3">21</td><td>16.7</td><td><lod< td=""></lod<></td></lod<>	21	16.7	<lod< td=""></lod<>
	186.0	60.0		<loq< td=""><td><lod< td=""><td>35.3</td><td><lod< td=""></lod<></td></lod<></td></loq<>	<lod< td=""><td>35.3</td><td><lod< td=""></lod<></td></lod<>		35.3	<lod< td=""></lod<>
	221.0	69.1		<loq< td=""><td><lod< td=""><td>38.9</td><td><lod< td=""></lod<></td></lod<></td></loq<>	<lod< td=""><td>38.9</td><td><lod< td=""></lod<></td></lod<>		38.9	<lod< td=""></lod<>
	134.7	41.3	12	<loq< td=""><td><lod< td=""><td rowspan="3">22</td><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<></td></loq<>	<lod< td=""><td rowspan="3">22</td><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>	22	<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>
2	129.8	33.2		<loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<></td></loq<>	<lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>		<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>
	107.7	31.9		<loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<></td></loq<>	<lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>		<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>
	131.2	32.2	13	<loq< td=""><td><lod< td=""><td rowspan="3">23</td><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<></td></loq<>	<lod< td=""><td rowspan="3">23</td><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>	23	<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>
3	169.0	47.4		86.4	<lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>		<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>
	128.1	52.5		44.2	<lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>		<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>
	115.6	48.5	14	<loq< td=""><td><lod< td=""><td rowspan="3">24</td><td>5.4</td><td><lod< td=""></lod<></td></lod<></td></loq<>	<lod< td=""><td rowspan="3">24</td><td>5.4</td><td><lod< td=""></lod<></td></lod<>	24	5.4	<lod< td=""></lod<>
4	119.3	47.3		<loq< td=""><td><lod< td=""><td>7.2</td><td><lod< td=""></lod<></td></lod<></td></loq<>	<lod< td=""><td>7.2</td><td><lod< td=""></lod<></td></lod<>		7.2	<lod< td=""></lod<>
	124.1	42.5		<loq< td=""><td><lod< td=""><td>9.9</td><td><lod< td=""></lod<></td></lod<></td></loq<>	<lod< td=""><td>9.9</td><td><lod< td=""></lod<></td></lod<>		9.9	<lod< td=""></lod<>
	195.4	18.4	15	<loq< td=""><td><lod< td=""><td rowspan="3">25</td><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<></td></loq<>	<lod< td=""><td rowspan="3">25</td><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>	25	<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>
5	122.0	13.3		<loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<></td></loq<>	<lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>		<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>
	196.3	20.0		<loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<></td></loq<>	<lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>		<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>
	208.0	99.5	16	<loq< td=""><td><lod< td=""><td rowspan="3">26</td><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<></td></loq<>	<lod< td=""><td rowspan="3">26</td><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>	26	<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>
6	116.9	103.5		<loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<></td></loq<>	<lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>		<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>
	116.0	83.9		<loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<></td></loq<>	<lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>		<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>
	41.6	22.8	17	<loq< td=""><td><lod< td=""><td rowspan="3">27</td><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<></td></loq<>	<lod< td=""><td rowspan="3">27</td><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>	27	<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>
7	88.1	8.79		<loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<></td></loq<>	<lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>		<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>
	48.1	25.9		<loq< td=""><td><lod< td=""><td>6.2</td><td><lod< td=""></lod<></td></lod<></td></loq<>	<lod< td=""><td>6.2</td><td><lod< td=""></lod<></td></lod<>		6.2	<lod< td=""></lod<>
	380.2	29.1	18	<lod< td=""><td><lod< td=""><td rowspan="3">28</td><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<></td></lod<>	<lod< td=""><td rowspan="3">28</td><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>	28	<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>
8	193.7	37.7		24.2	<lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>		<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>
	189.7	30.9		<loq< td=""><td><lod< td=""><td>7.1</td><td><lod< td=""></lod<></td></lod<></td></loq<>	<lod< td=""><td>7.1</td><td><lod< td=""></lod<></td></lod<>		7.1	<lod< td=""></lod<>
	285.2	73.0	19	<loq< td=""><td><lod< td=""><td rowspan="3">29</td><td>6.5</td><td><lod< td=""></lod<></td></lod<></td></loq<>	<lod< td=""><td rowspan="3">29</td><td>6.5</td><td><lod< td=""></lod<></td></lod<>	29	6.5	<lod< td=""></lod<>
9	126.6	26.8		<loq< td=""><td><lod< td=""><td>8.9</td><td><lod< td=""></lod<></td></lod<></td></loq<>	<lod< td=""><td>8.9</td><td><lod< td=""></lod<></td></lod<>		8.9	<lod< td=""></lod<>
	104.6	81.6		<loq< td=""><td><lod< td=""><td>7.6</td><td><lod< td=""></lod<></td></lod<></td></loq<>	<lod< td=""><td>7.6</td><td><lod< td=""></lod<></td></lod<>		7.6	<lod< td=""></lod<>
	217.6	43.0	20	6.9	<lod< td=""><td rowspan="3">30</td><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>	30	<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>
10	162.7	46.2		<loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<></td></loq<>	<lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>		<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>
	114.1	64.0		<loq< td=""><td><loq< td=""><td>5.4</td><td><lod< td=""></lod<></td></loq<></td></loq<>	<loq< td=""><td>5.4</td><td><lod< td=""></lod<></td></loq<>		5.4	<lod< td=""></lod<>
Avg*	156.7	46.8		< 9.73*	< 0.421*		< 8.29*	< 0.367*
SD	68.8	24.7		16.5	0.3		8.2	0.0
LOQ	41.6	2.00		5.20	2.00		5.20	2.00
LOD	0.390	0.367		0.390	0.367		0.390	0.367

<u>*Reporting convention:</u> If <LOQ, use LOQ value If <LOD, use LOD value

Provides worst case estimate and allows comparison between products


µg/session

Results: Phenolics

For e-cigarettes, ANOVA comparisons confirm Phenolics (exhaled aerosol) = Phenolics (exhaled breath)

Results: Carbonyls

For e-cigarettes, ANOVA comparisons confirm Carbonyls (exhaled aerosol) = Carbonyls (exhaled breath)

High-level Result Summary

- Exhaled e-cigarette aerosol >99.9% water and glycerin
- Mass balance of exhaled e-cigarette aerosol is quantitative (~100% for both products)
- Phenolics and carbonyls in exhaled e-cigarette aerosol were typically below the quantitation or detection limits and not distinguishable from exhaled breaths
- Phenolics and carbonyls in exhaled cigarette smoke were in quantitation range and similar to previously reported data

Acknowledgements

- Nicotine and glycerin analysis Kyle Lott
- Water analysis Deb Clouser
- Phenolics analysis Taffi Lyle
- Carbonyls analysis Jennifer Robards, Taffi Lyle
- Technical Discussions Phil Stern, Carl D'Ruiz, Drs. Steven Brown, J. Dan Heck, Edward Robinson and Robert Stevens
- For additional information: Int. J. Environ. Res. Public Health 2014, 11 in-review.