Determination of Benzo[a]pyrene in **Smokeless Tobacco** Products by GC-MS

Chorng B. Huang¹, William Adams², Karl Wagner¹ and Naren Meruva¹

> ¹ Altria Client Services. ² Eurofins Lancaster Laboratories, 601 East Jackson St, Richmond, VA 23219

Altria Client Services

- The US FDA requires tobacco manufacturers to report quantities of harmful and potentially harmful constituents (HPHCs) in tobacco and tobacco smoke
- Standardized methods are essential for accurate and consistent measurements across the product testing laboratories

HPHCs in Smokeless Tobacco Products (STPs)*	CORESTA Recommended Method
Nicotine	N° 62
Tobacco Specific Nitrosamines (NNN and NNK)	N° 72
Ammonia	N° 73 [#]
Benzo[a]Pyrene (B[a]P)	
Carbonyls (Formaldehyde, Acetaldehyde & Crotonaldehyde)	
Metals (Arsenic and Cadmium)	

No standardized method exists our rently

Under 2012).

Sept 30, 2014 | 2 282

*Reporting Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke Under Section 904(a)(3) of the Federal Food, Drug, and Cosmetic Act" (Guidance for the Industry, March 2012). # Under scope expansion

RC2014(68) - Document not peer-revie

Objective

- Develop a rapid, sensitive and selective GC-MS method for the determination of B[a]P in STPs
- Evaluate common workflow, instrument platform and conditions for the determination of B[a]P in various tobacco product types:
 - Cigarette smoke by GC-MS
 - Cigarette filler
 - Snus
 - Moist snuff
 - Dry snuff
 - Chewing tobacco

CRM-58/ISO 22634:2008

Wide Calibration Range High Sensitivity High Selectivity

GC-MS: Gas Chromatography Mass Spectrometry; CRM – CORESTA Recommended Method

Method Scope:

Product Type	Reference Products	Preparation
Snus pouch	CRP-1	cut the pouch open
Moist snuff	CRP-2	use as-is
Dry snuff	CRP-3	use as-is
Chewing tobacco	CRP-4	freeze ground using liquid nitrogen to <4mm particle size
Tobacco filler	3R4F	freeze ground using liquid nitrogen to <4mm particle size

CRP - CORESTA Reference Product

Analytical Method

Gas Chromatography (GC)		
GC Column	DB-17MS (30 m x 0.25 mm ID x 0.25 μm)	
Oven Temperature Program	Initial 200 °C hold for 1.0 min Ramp 25 °C/min to 280 °C Ramp 40 °C/min to 325 °C, hold for 6.67 min	
GC Run Time	12.0 min	
Column Flow	1.0 mL/min	
Inlet Temperature	300 °C	
Injection Mode	Pulsed splitless, 25 psi until 0.95 min	
Injection Volume	1 μL	

Analytical Method

Mass Spectrometry (MS)		
Acquisition	Selected Ion Monitoring mode 6 min solvent delay $m/z = 264/132$ amu for B[a]P-d ₁₂ at 9.04 min $m/z = 252/126$ amu for B[a]P at 9.10 min	
Transfer Line Temperature	315 °C	
Quad/Source Temperatures	200 °C/250 °C	

Method Workflow

Solid Phase Extraction (SPE) for B[a]P*

SPE using Strata-X™ cartridges (60 mg, 3 mL, 33µm reversed phase):

Condition

3 mL methanol

Load 6 mL filtered methanol sample extract

Wash

- 2 mL methanol:water (1:1)
- 2 mL isopropanol
- 0.3 mL hexane

Elute 3 mL toluene:iso-octane (1:1)

^{*} Reversed-Phase Sample Clean Up for Analysis of Benzo[a]pyrene by Gas Chromatography/Mass Spectrometry, Celeste Wilkinson and Craig Chwojdak Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 2007, 52 (1)

Importance of SPE Cleanup

SPE sample cleanup minimizes the matrix interferences for B[a]P detection

Calibration Range

Level	B[a]P (ng/mL)
1	0.5
2	1.0
3	5.0
4	10.0
5	50.0
6	125.0

Extended calibration range covers B[a]P yields observed in various tobacco product types

B[a]P Chromatograms (Calibration Standard)

Selected ion monitoring (SIM) and use of labeled internal standard enables accurate B[a]P detection

B[a]P Chromatograms (Tobacco Extracts)

B[a]P levels vary significantly in different tobacco product types

Sample – Mixture of polyaromatic hydrocarbons (PAHs)

Current method optimized for B[a]P determination and could be extended for other PAHs

B[a]P Validation Summary

Parameter	Summary
Calibration	$R^2 > 0.995$, n=5 days
Accuracy	Average recovery 86.3% to 111.9%
Precision - Instrument	2.8% RSD (n=6)
Precision - Repeatability	3.4-7% RSD (n=6)
Precision – Intermediate	4.2-9.4% RSD (n=6, 3 days)
Selectivity	No interferences observed based on recovery results from standard addition studies
LOQ	0.5 ng/mL (Cal-1)

Reference Product Data

B[a]P in Smokeless Tobacco Products

Summary

- Developed and validated a rapid, sensitive and selective GC-MS method for B[a]P in smokeless tobacco
- Suitable for B[a]P determination in snus, moist snuff, dry snuff, chewing tobacco and cigarette filler
- Method workflow consistent with BaP smoke method
- Currently being evaluated by CORESTA smokeless tobacco sub-group to determine inter-lab variability

