

Purpose

The FDA Center for Tobacco Products (CTP) ha identified ammonia as a harmful or potentially harmful constituent (HPHC) in tobacco and toba products. However, there is currently not a gene accepted method for the determination of ammo in mainstream tobacco smoke. Several analytic techniques are commonly used to measure ammonia, including ion chromatography (IC) wit conductivity detector, LC-MS/MS and spectrophotometric detection. For this study, two methods were used, ion chromatography and spectrophotometric detection.

Methods

In this study, the ammonia amounts in mainstrea smoke from 3R4F, CM7 and 1R5F reference cigarettes under both the ISO and the Canadian Intense smoking regimes were determined by tw different analytical methods.

Sample Preparation-Smoke collection

All samples were collected on a Cerulean SM450 smoke machine and were smoked under both the ISO and Intense regimes.

Sample Preparation-IC

- Samples were collected on a Cambridge filter followed by a impinger containing 40mLs of 0.0 $M H_2 SO_4$ solution for the IC analysis
- The Cambridge filter pad was extracted in 40m of 0.025 M H₂SO₄ solution from the impinger for 30min on orbital shaker at 200 rpm.
- Samples were syringe filtered using a 0.45 µm filter prior to the analysis on the IC system.

THE DETERMINATION AND COMPARISON OF AMMONIA CONTENT IN MAINSTREAM TOBACCO SMOKE BY ION CHROMATOGRAPHY AND SPECTROPHOTOMETRIC METHODS Andy Stinson, Andy Huckins, Liggett Group LLC, Mebane, NC USA

		Sample Preparation-UV-Vis								
as acco erally onia al tha o		Sar 50n 50n 5mo Sar Sar Sar Sar add Sar add min Fin Fin rea	nples were col hLs of saturate oking the samp oke to absorb i nples were trea nples were the held for 4 min nples then had led and allow t utes ally a 3 M NaC ction.	lected by d boric a oles had n the so ated with n treate utes l a cataly he react OH solut ue color	y two im acid solu 20 minu lution n charco d with a yst and a ion to o ion was	pingers ution. Found the hold oal and found chloring a pheno ccur for added found e for 1 h	containing ollowing to allow iltered e solution ol solution exactly 7 to stop th hour.			
			Inst	rumenta	al Cond	itions				
۲O		UV-Vis- Method* Method = chlorine/phenol Wavelength = 625mm Run time = ~2 samples per hour Calibration curve range: 0.10 – 4.0 μg/mL ammon								
	•		with a Electro		al detec	tion				
		Rur	Vietnoa = Conauctivity Zup time – 2 samples par bour							
		Calibration curve range: $0.094 - 9.4 \text{ ug/mb}$ among								
e	Results									
		Method Precision 3R4F		UV-Vis		IC				
			AVG (µg/cigt.)		8.48		8.02			
oad		Std. Dev.		1.53		0.399				
			%RSE)	18	.0%	4.97%			
nls			Cigarette	1R5F	-ISO	1R5F-	Intense			
JI			Method	UV-Vis	IC	UV-Vis	IC			
			AVG (µg/cigt.)	2.56	1.81	14.6	22.9			
			Std. Dev.	0.71	0.09	2.21	1.89			
			%RSD	27.6%	4.72%	15.2%	8.27%			
mmonia in T	obac	co S	moke" Tobacco							

The concentrations of ammonia are comparable across the two different analytical methods (UV-Vis and IC) used on this study under ISO conditions. There is more variability in the data when cigarettes are smoked under Intense conditions. For both methods, the LOD and LOQ are comparable. The method precisions for the IC were excellent with % RSD of less than 10%.

Yields under ISO conditions

3R4F		1R	5F
CM7-ISO		3R4F-ISO	
V-Vis	IC	UV-Vis	IC
1.7	12.0	8.48	8.02
.94	0.721	1.53	0.399
6.6%	6.02%	18.0%	4.97%
U		V-Vis	IC
)	0	.103	0.201
)	0	.342	0.669

Conclusion