U.S. Pharmacopeia Dissolution Technique for the Determination of Nicotine and Flavor Release from Smokeless Tobacco Products

John H. Miller, Helen Miller, Richard Schibetta, Anthony Brown, Karl Wagner, Tim Danielson, Jason W. Flora

Altria Client Services, 601 East Jackson Street, Richmond, VA 23219

Altria Client Services

Introduction

Smokeless Tobacco Analysis:

- Analysis of smokeless tobacco products is based on forced extraction of constituents from tobacco
- This does not provide information for constituent release under consistent conditions
- There are no standardized methods to make comparisons of constituent release for smokeless tobacco products

Pouch

Snus

Objective

- Evaluate USP4* dissolution apparatus as a potential technique to evaluate nicotine and flavor release from moist smokeless tobacco (MST) products (loose and pouch) and snus products under consistent conditions
 - Allows for a way to compare multiple products
 - Not meant to replicate human exposure

Pouch

Snus

*United States Pharmacopeia

USP4 Dissolution Apparatus - SOTAX CE7 Smart USP4

Cell Holder

Pump

Fraction Collector

Method

USP4 Dissolution Apparatus - SOTAX CE7 Smart USP4

Image used: http://www.sotax.com/products/dissolution-testing/usp-4/dissolution/off-line-open/?no cache=1

Method

USP4 Dissolution Cell Setup

Figure 2a: Loose Product

1 mm beads on bottom 3 mm beads on top

Direction of Flow

Figure 2b: Snus

1 mm beads on bottom Pouch held with clip

Method

Artificial Saliva (pH 6.8)

Ingredient	Per 1000 mL
Magnesium Chloride Hexahydrate (MgCl · 6H2O)	0.17 g
Potassium Hydrogen Phosphate anhydrous (K2HPO4 · H2O)	0.68 g
Sodium Chloride (NaCl)	0.33 g
Potassium Chloride (KCl)	0.75 g
Calcium chloride dihydrate (CaCl · 2H2O)	0.15 g
Potassium Carbonate (K2CO3)	0.53 g
Type I Water (De-ionized)	1000 mL
Hydrochloric acid	To pH 6.8 ± 0.1

German Institute for Standardization (DIN) Recipe is based upon German standard DIN v53160-1, "Determination of the Colour Release of Articles of Daily Use, Part1: Resistance to Artificial Saliva", section 4.2, October 2002.

Method - SOTAX CE7 Smart USP4

USP4 parameters

- Flow rate 4.0 mL/min
- Temperature 37°C
- 1 mm glass beads on bottom
- 3 mm glass beads on top or clip
- 1.0 gram of tobacco or 1 pouch

Table 1: Sotax Collection

Fraction Number	Fraction Collection Time (min)	Fraction Collection Duration (min)	Volume Collected (mL)
1	4	4	16
2	8	4	16
3	12	4	16
4	16	4	16
5	20	4	16
6	30	10	40
7	40	10	40
8	50	10	40
9	60	10	40

Method and GC/MS parameters

Sample Preparation

- 1. Transfer 1 mL of each fraction into an extraction vial and add 250 μL of 2N NaOH.
- 2. Add 1 mL of methylene chloride extraction solution containing Internal Std.
- 3. Vortex for 45 minutes
- 4. Transfer methylene chloride to an autosampler vial for analysis by GC/MS.

Gas Chromatograph

Column	DBWax-ETR, 30m x 0.25mm x 0.25μm d _f
Injection Volume	1 μL
Inlet Temp	250°C
Inlet Mode	Split (5:1)
Analysis Time	8.0 min

Mass Spectrometer – Selected Ion Monitoring

Menthol (m/z)	71 (quant), 81, 95
Quinoline - ISTD (m/z)	129 (quant), 102
Nicotine (m/z)	84 (quant), 133

Calibration

Menthol	$0.50 - 10.0 \mu g/mL$	Linear no Weighting
Nicotine	$1.00 - 200 \mu \text{g/mL}$	Linear no Weighting

GC/MS Chromatogram (TIC) - Example

Method Validation

- Calibration
 - $R^2 > 0.997$ on all days
 - % RCR < 9.2%
- Accuracy evaluated at 3 levels for each product type
 - Menthol: between 97.0% and 113%
 - Nicotine: between 85.2% and 112%
- Precision < 3.0%</p>
- Specificity No interferences were observed at the retention time or m/z of any of the analytes
- LOQ Menthol 0.176 μg/mL, Nicotine 0.442 μg/mL
- LOD Menthol 0.053 μg/mL, Nicotine 0.133 μg/mL
- Stability Dissolution samples and final extracts were stable for up to 4 days at 0-4 °C (refrigerated)

Results – Calculations for Cumulative Release Profile

Results -Flavor Release (Menthol in Mint Products)

Results – Nicotine Release (µg/g)

Summary

- USP4 Allows for cumulative release profiles to be generated for both loose and pouch smokeless tobacco products under consistent conditions
- Analysis of fractions was performed by GC/MS for nicotine and menthol
- Analytical method was fully validated for analysis of nicotine and menthol in artificial saliva
- This technique demonstrates excellent reproducibility and can be applied to measure a variety of constituents that are released from smokeless tobacco for comparative and regulatory reporting purposes

