

COMPARISON OF STATISTICAL AND MATHEMATICAL METHODS IN SUPPORT OF EQUIVALANCE TESTING

Rana Tayyarah ITG Brands, LLC rana.tayyarah@itgbrands.com

TSRC 2015 # 62

Where the *t*-test Fails

- Precision is very good
- Precision is poor
- n is small

Hypothesis is that the means are similar

ent not peer-reviewed

Hypothesis Testing

X is Different

- Control versus purposeful change
- Suspect value
- Student's t-test, ANOVA

X is Equivalent/Not Different

- Process scale-up
- Methods transfer
- Equivalent materials substitution
- Batch to batch comparisons

Potential Real World Cigarette Applications

- Testing of the same batch at different labs
 - Insights from initial analysis for harmful and potentially harmful constituents (HPHC)...CORESTA 2013 ST#23

- Testing of multiple batches of the same products
 - Variation in toxicant yields from selected products... CORESTA 2013 IG#02
 - Multiple point in time evaluation of commercial and reference cigarette products ... CORESTA 2013 ST#59
 - In progress CVAR study to understand product variability

Techniques Explored

- Percent Difference & Visual Inspection
- Repeatability & Reproducibility
- Critical Difference
- Confidence Interval Analysis
- Two One-Sided t-Test (TOST)

Percent Difference & Visual Inspection

- Percent difference, percent error, relative difference* depending on design
- Quick and simple way to assess a range of data
- Requires experience/knowledge: methods, measures, study design, sample type

Percent difference = (2*(A-B))/(A+B)*100; two samples, assumes no control Percent error = (A-B)/A*100; two samples, assumes A is the control Relative Percent difference = (2*(max-min))/(max+min); >two samples, assumes no control

% Difference

Analyte		Lab A	Lab B	Lab C	Lab D	Relative Difference
Carbon Monoxide	mg/cig	10.2	10.2	10.3	11.3	10%
Nicotine	mg/cig	0.66	0.68	0.71	0.68	6%
Formaldehyde	μg/cig	25.1	24.8	20.1	13.0	64%*
Acrolein	μg/cig	53.3	52.1	45.9	58.7	24%
NNK	ng/cig	91.7	99.7	98.7	99.4	8%
1-Aminonaphthalene	ng/cig	14.5	14.3	12.7	10.4	32%

Mainstream Smoke yields for 3R4F cigarettes, ISO Methods were not necessarily the same for the different labs

*22% if Lab D not considered

Adapted from: Harmful and Potentially Harmful Constituents Analysis and Considerations, Industry Presentation to the Center for Tobacco Products February 14, 2013

Adapted from: Harmful and Potentially Harmful Constituents Analysis and Considerations, Industry Presentation to the Center for Tobacco Products February 14, 2013

Repeatability & Reproducibility

- Comparisons to limit values
- Good for well-established methods (TNCO)
- Applicable to most any method
- Less limited by need for experience with system

- Requires experimentation with in-common methods
- Scope of application across products may depend on study design

Repeatability & Reproducibility

Mean value mnfdpm	e Repeatability limit	Reproducibility limit
	r	\boldsymbol{R}
0.82	0.40	0.60
1.61	0.52	0.74
3.31	0.52	0.90
7.70	0.88	1.51
12.61	1.06	1.70
17.40	1.19	1.84

ISO_4387-2000 Cigarettes — Determination of total and nicotine-free dry particulate matter using a routine analytical smoking machine; calculated to expect fewer than 1 in 20 random fails

201

- Maximum difference expected between two final values with a specified probability
- Calculated from r&R values and intermediate precision
- Compare actual difference to CD

Critical Difference

Critical Difference

Gray = CD value White = actual difference

Normalized difference

B. Teillet, X. Cahours, T. Verron, S. Colard, S. Purkis. Comparison of Smoke Yield Data Collected from Different Laboratories. Beitr. Tabakforsch. Int. 25 (2013) 663-670.

Confidence Interval Analysis

Table 3 — Confidence interval

Smale constituent and	Sampling				
Smoke constituent and ISO measurement method	Over a period of time (<u>Clause 5</u>)	At one point in time (4.1 and 4.2)			
NFDPM (ISO 4387 and ISO 10362-1)	± 15 %	± 20 %			
Nicotine (ISO 10315)	± 15 %	± 20 %			
Carbon monoxide (ISO 8454)	± 20 %	± 25 %			
NOTE These confidence intervals will not be smaller than ± 1 mg for NFDPM, ± 1,5 mg for CO and ± 0,1 mg for nicotine.					

^{*}Calculated with a target that on average no more than 1 in 20 determinations are likely to be outside of the interval purely by chance.; not calculated in accordance with ISO 2602

Confidence Interval Analysis – Repeat Testing over time

n=3488, 15% long term CI limits

Confidence Interval Analysis – Batch to Batch Comparisons over time

n=451, 15% long term CI limits

Two one-sided t-test (TOST)

Two sample t-test

Two one sample t-test

If the difference between means falls in this range, we would conclude the means belong to equivalent groups/are not substantially different.

Where A and C are simulated data; C = 1.3B

Conclusions

- There are several options available for evaluating data expected to be similar/equivalent
- r&R, Critical Difference, Confidence Intervals
 - Require in-common methods
 - Establishment through experimentation
 - Straightforward calculations against limits
- % Difference, TOST
 - Require experience
 - Require systemic knowledge

References

- ISO_5725 Set
- ISO_4387-2000 Cigarettes Determination of total and nicotine-free dry particulate matter using a routine analytical smoking machine
- ISO 8243-2013 Cigarettes Sampling
- Eldridge A.; Betson T.; McAdam K. Variation in toxicant yields from selected products CORESTA Meeting Smoke Sci.-Prod. Techno Groups, Seville, 2013, abstr. IG 02
- Tayyarah, R. Multiple point in time evaluation of commercial and reference cigarette products for abbreviated HPHC yield for mainstream smoke and filler CORESTA Meeting Smoke Sci.-Prod. Techno Groups, Seville, 2013, abstr. ST 59
- Wagner K.A.; Desoi D.; Morton M.J.; Oldham M.J. Insights from initial analysis for harmful and potentially harmful constituents (HPHC) in cigarette and smokeless tobacco products CORESTA Meeting Smoke Sci.-Prod. Techno Groups, Seville, 2013, abstr. ST 23
- Harmful and Potentially Harmful Constituents Analysis and Considerations, Industry Presentation to the Center for Tobacco Products February 14, 2013
- Verron, T. et al. Product Comparison: The Risk Associated with Multiple Testing, CORESTA Quebec, 2014 abstr. ST 29
- B. Teillet, X. Cahours, T. Verron, S. Colard, S. Purkis. Comparison of Smoke Yield Data Collected from Different Laboratories. Beitr. Tabakforsch. Int. 25 (2013) 663-670.
- Limentani, G. et al. Beyond the t-Test: Statistical Equivalence Testing, Analytical Chemistry June 2005.

