Construction and genetic evaluation of chromosome segment substitution lines (CSSLs)in tobacco (Nicotiana tabacum L.)

TONG Zhijun, JIAO Fangchan, CHEN Xuejun, XIAO Bingguang

cxjkm@163.com

Yunnan Academy of Tobacco Agricultural Sciences (YATAS), CNTC, CHINA

Outline

- ☐ Background
- Methodology
- □ Results
 - Selection of polymorphic microsatellite markers of tobacco genome
 - **■** Construction of tobacco CSSLs
 - Genetic Evaluation of CSSLs: Distribution, number and length
- **□** Upcoming experiments

Background

☐ Leaf production is affected by:

■ Biotic stresses

■ Abiotic stresses

Background

- ☐ It is Known that many important traits of tobacco are controlled by quantitative trait loci (QTL). However,
 - The developed mapping populations of F_2 or BC_1 and even doubled-haploid and recombinant inbred lines, cannot be used to estimate single QTLs precisely.
 - These populations are not ideal for characterization of target QTLs and further intensive analysis.
 - Moreover, phenotype of QTLs are always influenced by genetic background and environmental factors
 - Great attention of CSSLs have been conducted in corn, rice and cotton.

Background

- CSSLs?
 - SSR markers were used
 - Target plant carries a single or a few chromosomal segments from the donor parent in the genetic background of RP were selected
 - Ideal CSSLs population: has ONLY one different chromosome segment, while the whole population cover the entire genome of the donor
- ☐ To our knowledge, this is the FIRST report on CSSLs research in tobacco

Methodology

- **□** Construction of CSSLs
 - **■** BC1 populations were constructed in 2013.(300 plants)
 - A total of 100 SSR markers were produced in 2014
 - Stable and homozygous tobacco CSSLs were established in Feb.2016.
- ☐ Genomic DNA extraction and genotypic analysis of the substitution lines
- **□** Evaluation of the substitution lines

Selection of Polymorphism SSR markers in tobacco

- **□** Two preliminary analyses were conducted for tobacco CSSL construction.
 - 13,645 pairs of tobacco SSR markers were used
 - Two SSR genetic maps (unpublished data) with 626 and 562 marker loci, respectively, were constructed based on the two BC_1F_1 plants derived from crosses between the donor parents (K326 and Beinhart1000-1) and the recipient parent (Y3), in which 416 SSR markers were shared by the two maps and evenly distributed in the 24 linkage groups

Polymorphism between the recipient and donors detected by tobacco SSR markers

Donor	No. of marker	No. of polymorphic marker	Ratio of polymorphism (%)	Average distance between polymorphic marker ²⁾ (cM)	No. of shared polymorphic marker
K326	18764	626	3.34	1.79 (1120.45cM/626)	416
Beinhart1000-1	18764	562	3.00	2.39 (1341.18cM/562)	

Construction of CSSLs

- ☐ The procedure used

 for CSSL development is shown
 - choose 10-20 cM for 1 SSR
 - 100 SSR mark for tracking and detecting
 - Distance range 0.05-36.88cM

Construction of CSSLs

- ☐ The procedure used

 for CSSL development is shown
 - choose 10-20 cM for 1 SSR
 - 100 SSR mark for tracking and detecting
 - Distance range 0.05-36.88cM

Selected BC_3F_1 lines (L:Y3/K326 .R:Y3/Beinhart1000-1) by tracking and detecting

Genetic analysis of substituted chromosome segments in CSSLs

➤ Totally, a set of CSSLs containing substitution chromosome segments from K326 and Beinhart1000-1 were generated

Donor	Number	Number	Segments/	Size of Segments (cM)
	CSSLs	segments	CSSLs	
K326	131	215	1.64	0.05-36.88
Beihart1000-1	125	162	1.30	
Total	256	377	1.47(Ave.)	7.75(Ave.)

Genetic analysis of substituted chromosome segments in CSSLs

- ☐ Uneven distribution happened for 377 segment among the 24 linkage groups (LG).
 - The most introgressed segments found in LG2(35)
 - LG 16 having the least(5)
 - For 215 segments from K326,LG 2 contained the most segments(21), LG16 having the least(3)
 - For 162 segments from Beinhart1000-1,LG 2 also contained the most segments(14), LG16 having the least(2)

Genetic analysis of substituted chromosome segments in CSSLs

- ☐ Segments from K326 and Beinhart1000-1 were smaller than 5 cM
- ☐ Major segments from K326 and from Beinhart1000-1 were from 5-10 cM
- ☐ While 13 segments from K326 and 52 segments from Beinhart1000-1 ranged from 10-15 cM.

Conclusions

- □ The first set of CSSLs in tobacco has been constructed (ONLY carried 1-5 segments).
- ☐ The CSSL population provided a useful tool for gene identification, these CSSLs will also provide a foundation for tobacco improvement on disease resistance and leaf quality.

Upcoming Experiments

- □ Continue to find new CSSLs.
- ☐ Elucidating a major gene for brown spot resistance.

Thank you for your attention