Determination of Volatile Organic Compounds in E-Cigarette Liquids and Aerosols by GC-MS Anthony P. Brown, Karen C. Avery, Jason W. Flora, and Karl A. Wagner Altria Client Services LLC, 601 East Jackson Street, Richmond, VA 23219

ABSTRACT

In May 2016, the U.S. Food and Drug Administration (FDA) issued the final rule¹ to extend its authority to regulate electronic cigarettes (e-cigarettes) and published the draft guidance Premarket Tobacco Product Application for Electronic Nicotine Delivery Systems.² FDA recommends reporting the quantities of designated Harmful and Potentially Harmful Constituents (HPHCs) in e-liquids and aerosols, which include the following volatile organic compounds (VOCs): 1,3-butadiene, isoprene, acrylonitrile, benzene, and toluene. VOCs are found in mainstream cigarette smoke;³ however, generation of aerosol from an e-cigarette does not involve combustion, for this reason VOCs are not anticipated to be present. This work describes a gas chromatography-mass spectrometry (GC-MS) method for determining these VOCs in e-cigarette liquids and aerosols using a method based on CORESTA

OBJECTIVE

- Develop and validate a sensitive and selective method for the determination of VOCs in e-liquids and aerosols
- Determine the transfer efficiency of VOCs to the aerosol from fortified reference e-liquids
- Analyze commercial e-liquids and e-cigarette devices covering a range of nicotine concentrations and propylene glycol/glycerin ratios for VOCs

ANALYTICAL METHOD

Parameters	Description
Instrument	Agilent 7890B GC / 5977A MSD
GC Column	RTX-624 30 m x 0.25 mm ID x 1.4 μm df
Oven Program	40 °C hold for 6 min, 20 °C /min to 235 °C hold for 3 min
Injection Volume	1.0 μL
Injection Port Temperature	250 °C
Injection Mode	Split (100:1)
Flow Rate	1.0 mL/min
Transfer Line Temperature	240 ℃
Source Temperature	230 ℃
Quadrupole Temperature	150 ℃
Run Time	18.8 min

Aerosol Collection and Sample Preparation

25 puffs collected on CFP

Transfer Efficiency Study

Fortified e-cigarette cartridges were used within 1 hour of filling to minimize losses

ر 200

Validation Matrices: E-liquids and E-cigarettes

Sample ID	Used in	PG/Gly		Nicotine	VOC
	E-cig	(70)	(70)	(70)	Fortification
E-liquid 1	No	50/50	15	2.5	None
E-liquid 2	Yes	50/50	15	0	None
E-liquid 3	Yes	50/50	0	2.5	None
E-liquid 4	No	100/0	15	0	None
E-liquid 5	No	0/100	15	0	None
E-liquid Low	Yes	50/50	15	2.5	Low
E-liquid High	Yes	50/50	2.5	0	High

Validation Summary

Parameter		1,3-Butadiene	lsoprene	Acrylonitrile	Benzene	Toluene
Linearity	R ²	<u>></u> 0.999				
	Range (µg/mL)	0.1 - 4.0	0.5 – 20	0.05 – 2.0	0.1 - 4.0	0.2 - 8.0
Trapping Efficiency	Aerosol (%)	> 99	> 99	> 99	> 99	> 99

Survey of Commercial Products

- 13 commercial e-liquids covering a range of nicotine concentrations and propylene glycol/glycerin ratios were analyzed for VOCs. The e-liquids included the following flavor profiles: sweet, fruit, coffee/tea extract, and tobacco.
- The e-liquids and aerosols from 6 top-selling commercial devices including MarkTen[®] XL Classic and MarkTen[®] XL Menthol were analyzed for VOCs.

VOCs were not detected in commercial e-liquids or e-cigarette aerosols

E-liquid Low	E-liquid (µg/g)	9.4	48.3	4.84	9.64	19.4
E-liquid High	Aerosol* (µg/g)	45.7	232.4	23.3	46.4	93.2
Recovery	E-liquid (%)	79 – 81	82 – 82	89 – 89	89 – 97	89 – 90
	Aerosol (%)	78	78	80	84	80
3-day Precision	E-liquid (%RSD) (n=6)	<u><</u> 3.6	<u><</u> 3.6	<u><</u> 4.7	<u><</u> 2.1	<u><</u> 1.5
	Aerosol (%RSD) (n=15)	<u><</u> 12.0	<u><</u> 7.9	<u><</u> 1.8	<u><</u> 2.2	<u><</u> 2.5
LOD	E-liquid (µg/g)	0.7	1.7	0.8	0.7	0.7
	Aerosol* (µg/g)	3.2	8.0	4.0	3.2	3.2
*Assume aerosol mass = 0.125 g						

REFERENCES

- 1. FDA (2016) Deeming Tobacco Products To Be Subject to the Federal Food, Drug, and Cosmetic Act, as Amended by the Family Smoking Prevention Tobacco Control Act; Restrictions on the Sale and Distribution of Tobacco Products and Required Warning Statements for Tobacco Products. Federal Register Rules and Regulations, 81:28974-29106.
- 2. FDA (2016) Premarket Tobacco Product Application for Electronic Nicotine Delivery Systems; Draft Guidance for Industry; Agency Information Collection Activities; Proposed Collection; Comment Request. Federal Register Proposed Rules, 81:28781-28783.
- 3. Liu C, Feng S, van Heemst J, McAdam KG (2010) New insights into the formation of volatile compounds in mainstream cigarette smoke. Analytical and Bioanalytical Chemistry 396:1817-1830.
- 4. CORESTA (2014) Recommended Method No. 70 Determination of Selected Volatile Organic Compounds in Mainstream Cigarette Smoke by GC-MS.

SUMMARY

- This method was validated for the quantitative analysis of five VOCs in e-liquids and aerosols.
- Due to the volatility of these analytes, there was essentially complete loss of all the fortified analytes within 3.5 days.
- VOCs were not detected in 13 commercial e-liquids or 6 commercial e-cigarette products.
- These results were anticipated because e-cigarette aerosol formation does not involve combustion of tobacco. VOCs are not stable in e-liquids or cartridges under ambient sample storage and handling conditions.

This poster may be accessed at www.altria.com/ALCS-Science