The Influence of Primary Tillage and Flue-Cured Tobacco Management on Palmer Amaranth Populations in a Three Year Crop Rotation

47th Tobacco Workers Conference

Presentation Outline

- Brief Introduction
- Project Overview
- Results
- Conclusions
- Volunteer Peanut Control
- Questions

Palmer Amaranth Suppression

Soybean 2008

Tobacco 2008

Project Overview

- Established a three year crop rotation with differing agronomic practices
 - Year one: Flue-cured tobacco (var. NC 196)
 - Year two: Cotton (var. Phytogen 375 WRF)
 - Year three: Cotton (var. Phytogen 499 WRF)
- Quantify Palmer amaranth density prior to cultivation in tobacco and POST herbicide application in cotton
- Record treatment effect on crop yield and value
- Evaluate the economic impact of treatment combinations

Project Outline & Justification

- Quantify Palmer amaranth suppression in year one of crop rotation.
 - Does row ridging effect Palmer amaranth density?
 - Are there treatments that reduce Palmer amaranth density?
- Quantify the effect of treatments imposed in year one to Palmer amaranth suppression observed in years two and three.
 - Do treatments from year one impact Palmer amaranth density in years two or three?
- Quantify the impact of year one treatments to the three year cumulative economic return.
 - Are alternative management practices worth the cost of application?

Project Outline & Site Description

- Two field sites at the Upper Coastal Plain Research Station
 - **-** 2012-2014 & 2013-2015
- Split-split-plot design
 - Main effect: Primary Tillage
 - Sub-plot: Herbicide Program
 - Sub-plot: Hand Weeding Program
- Four replications per field site
- 20 feet x 90 feet & 24 feet x 35 feet plot dimensions
- Soil Series: Goldsboro Loamy Sand

Treatments^a

Year One: Tobacco	Year Two: Cotton	Year Three: Cotton
———Tillage Program ^b + Herbicide Program ^{c,d} + Hand Weeding Program————		
Shallow $+ S/C + Yes$	Shallow + POST + Yes	Shallow + POST + Yes
Shallow $+ S/C + No$	Shallow + POST + No	Shallow + POST + No
Shallow + C + Yes	Shallow + POST + Yes	Shallow + POST + Yes
Shallow + C + No	Shallow + POST + No	Shallow + POST + No
Deep + S/C + Yes	Shallow + POST + Yes	Shallow + POST + Yes
Deep + S/C + No	Shallow + POST + No	Shallow + POST + No
Deep + C + Yes	Shallow + POST + Yes	Shallow + POST + Yes
Deep + C + No	Shallow + POST + No	Shallow + POST + No

^a Treatments were evaluated at two field sites from 2012-2014 & 2013-2015

^d POST=Liberty & RoundUp Powermax

^b Shallow=5 inches; Deep=15 inches

^c S=Spartan @ 5.0 fl. oz./a (Pre-T); C=Command @ 2 pts./a (PPI)

Data Collection

Year One: Tobacco

- Weed density quantification
 - Prior to cultivation
- Weed removal, late season
- Yield
- Quality
- Value
- Economic assessment
 - Tillage cost + herbicide cost + hand weeding cost

Years Two & Three: Cotton

- Weed density quantification
 - Prior to POST herbicide app.
- Weed removal, late season
- Cotton yield
 - Seed + Lint
- Cotton value
 - Seed + Lint
- Economic assessment
 - Gin cost + seed value + hand weeding

Year one: Palmer amaranth density at 2 & 6 weeks after transplanting (WAT) as influenced by primary tillage and herbicide program

Treatment Factor	2 WAT	6 WAT	
	number acre ⁻¹ ————————————————————————————————————		
Primary Tillage			
Shallow	29,442*	74,076	
Deep	14,293	45,770	
Herbicide Program			
Command	72,259*	109,921*	
Command plus Spartan	1,471	9,925	

^{*} Indicates significance at $p \le 0.05$ within a treatment factor. Data for each main effect are pooled over other levels of the other treatment factor

16(47) - Document not peer-reviewed

Year two: Palmer amaranth population at two and six weeks after planting (WAP) as influenced by primary tillage, herbicide program, and hand weeding

Treatment Factors	2 WAP	6 WAP
	number acre-1	
Primary Tillage		
Shallow	352,053	119,108
Deep	317,340	97,159
Herbicide Program		
Command	464,016	158,074*
Command + Spartan	205,378	58,193
Hand Weeding Program		
Hand Weeding	195,680	58,023
No Hand Weeding	473,714	158,244*

^{*} Indicates significance at $p \le 0.05$ within a treatment factor. Data for each main effect are pooled over other levels of the other treatment factors.

Year three: Palmer amaranth population at two and six weeks after planting (WAP) as influenced by primary tillage, herbicide program, and hand weeding

Treatment Factors	Palmer Amara	anth Population
	2 WAP	6 WAP
	numbe	er acre ⁻¹ ———
Primary Tillage		
Shallow	190	858
Deep	93	660
Herbicide Program		
Command	182*	1,052*
Command + Spartan	101	466
Hand Weeding Program		
Hand Weeding	94	464
No Hand Weeding	189*	1,054*

^{*} Indicates significance at $p \le 0.05$ within a treatment factor. Data for each main effect are pooled over other levels of the other treatment factors

Conclusions: Tobacco

Palmer amaranth Density

- Tobacco had higher Palmer amaranth density than soybean
 - Row ridging re-introduced Palmer amaranth seed (65% increase)
- Deep tillage reduced early season
 Palmer amaranth density by 51%
 - Tillage effect not observed 6 WAT
- Command plus Spartan at 2 & 6 WAT reduced Palmer amaranth density by 98 & 91%, respectively

Yield and Value

- Deep tillage increased yield (347 lbs acre⁻¹) and value (\$786 acre⁻¹)
- Command plus Spartan increased yield and value
 - Hand weeding increased yield and value in the absence of Spartan
- Absence of Spartan increased production cost and reduced economic return

Year One: Tobacco

Year One: Tobacco

Conclusions: Cotton

Palmer amaranth Density

- Deep tillage did not reduce Palmer amaranth density
- Command plus Spartan
 application in year one reduced
 Palmer amaranth density in years
 two and three
- Hand weeding reduced Palmer amaranth density

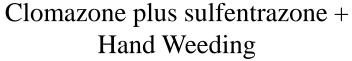
Yield and Value

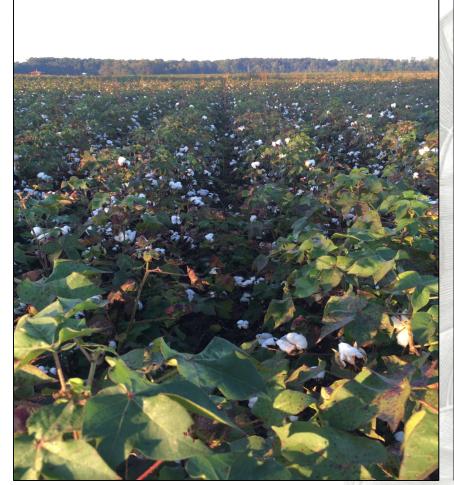
- Yield and value were not affected by treatments from previous years
- Production cost increased by hand weeding Command alone treatments
 - Increased production cost did not reduce economic return

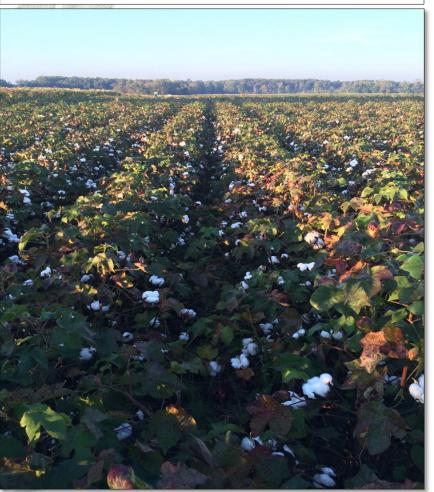
Year Three: Palmer amaranth Density in Cotton

Clomazone alone + No Hand Weeding

Clomazone alone + Hand Weeding







Year Three: Palmer amaranth Density in Cotton

Clomazone plus sulfentrazone + No Hand Weeding

2016_TW

Three year cumulative net economic return of tobacco and cotton as influenced by interactions of herbicide program and hand weeding

Treatment Factors		Cumulative Net Economic Return	
Herbicide Program	Hand Weeding Program	\$/acre	
Command	Hand Weeding	-518 b	
Command	No Hand Weeding	-1,925 c	
Command plus Spartan	Hand Weeding	1,451 a	
Command plus Spartan	No Hand Weeding	1,231 a	

Means followed by the same letter within the same column are not significantly different at $p \le 0.05$, data are pooled over primary tillage factor

Overall Conclusions

- Seed burial from deep tillage was overcome by bedding and post-transplanting cultivation
 - Yield increase observed would be expected where ripping shanks are used during bedding
- Herbicide program was key: Spartan + Command
 - ->90% ↓ in tobacco, 50% 60% ↓ in cotton
- Hand weed as necessary
 - Production cost increase was not significant where Spartan was applied
- Greatest economic return where Spartan was applied in year one

Acknowledgements

- Funding Source:
 - North Carolina Tobacco Research Commission
- PhD Committee:
 - Drs. Loren Fisher, David Jordan, Randy Wells, Josh Heitman, and Sandy Stewart
- Technical Support:
 - Joe Priest, Scott Whitley, Nathan Bennett, Matt Drake,
 Joseph Cheek, Matt Inman, Hunter Mason, Cam Finch
- Staff of the Upper Coastal Plain Research Station

Questions??

Matthew C. Vann
Assistant Professor & Tobacco Extension Specialist
Department of Crop Science-NCSU
matthew_vann@ncsu.edu

Website: tobacco.ces.ncsu.edu

