

Rationale and Significance

- Reduced labor cost for topping and suckering burley tobacco
 - 6-10 man-hours per acre
 - \$70 to 120 per acre
- Possible reduction in maleic hydrazide (MH) residues on cured leaf
- Uses currently labeled suckercides in tobacco production
 - Maleic hydrazide (MH)
 - Butralin (DNA)
 - Fatty Alcohol (FA)
- Purchasing/modifying equipment is not required

Limitations and Considerations

- Weather
 - Wet seasons are difficult
 - Applying pesticides
 - Rainfast
- Variability of growth in the field
 - Only one topping event vs. more than one
- Suckercide coverage in less than ideal fields
 - Tobacco that is not straight
 - Problematic in conventional method of topping as well
- Length of plant/number of leaves going to the barn
 - May result in more time housing and stripping

Objectives

Evaluate chemical topping efficacy on burley tobacco

- Determine appropriate RATE and optimum TIMING of suckercide applications on agronomic and quality traits
- Investigate which varieties are best suited for this method of topping (Maturity)

Study 1: Impact of Suckercide Rate Materials and Methods

Suckercide Rate

- Burley tobacco varieties:
 - Spindletop KT210 (late maturing)
 - Murray KT215 (late maturing)

• Treatments:

- 1. Man. topped: No Sucker Control (Untreated Control)
- 2. Man. topped: 1.5 GPA MH + 0.5 GPA Butralin (Standard)
- 3. Chem. topped: 2.0 GPA MH (Full)
- 4. Chem. topped: 1.5 GPA MH (Reduced)
- 5. Chem. topped: 2.0 GPA MH + 0.5 GPA Butralin (Full Mix)
- 6. Chem. topped: 1.5 GPA MH + 0.5 GPA Butralin (Red. Mix)
- 7. Chem. topped: 1.0 GPA Butralin (DNA)
- 8. Chem. topped: 10% concentration of Fatty Alcohol (FA)

Treatments applied at:

- Man. topped treatments applied at 10% bloom
- Chem. topped treatments applied at prebud (10% button)

2016 TWC22 Richmond.p

TWC2016(47) - Document not peer-reviewe

Materials and Methods Suckercide Rate

- Randomized Complete Block Design
 - Four replications
- Sprayer calibrated at 50 gal/A
 - Three nozzle/row configuration
- Data Collected:
 - Sucker control effectiveness
 - Cured leaf yield
 - TSNA/Alkaloid determination
 - Leaf/Plant dimensions
 - Leaf quality
 - MH residue analysis
- Statistical Analysis
 - SAS 9.4
 - Proc. GLIMMIX LSmeans at α=0.05

Study 2: Impact of Suckercide Timing Materials and Methods

Materials and Methods

Suckercide Timing

- Burley tobacco varieties:
 - Spindletop KT210 (late maturing) and TN90 (medium maturity)
 - Murray KT215 (late maturing) and TN90 (medium maturity)
- Treatments:
 - 1. Manually topped at 10% Bloom: Untreated Control
 - 2. Manually topped: 2.0 GPA MH + 0.5 GPA Butralin
 - 3. Chemically topped at pre-bud (10% button)
 - 4. Chemically topped at early bud (50% button)
 - 5. Chemically topped at 10% bloom
- All chemically topped treatments use 2.0 GPA MH + 0.5 GPA Butralin

Materials and Methods Suckercide Timing

- Randomized Complete Block Design
 - Four replications
- Sprayer calibrated at 50 gal/A
 - Three nozzle/row configuration
- Data Collected:
 - Growth Stage
 - Sucker control effectiveness
 - Cured leaf yield
 - TSNA/Alkaloid determination
 - Usable leaf number
 - Leaf dimensions
 - Leaf quality
 - MH residue analysis
- Statistical Analysis
 - SAS 9.4
 - Proc. GLIMMIX LSmeans at α=0.05

Spindletop and Murray Timing: Weight of Sucker Plant⁻¹ as a Percent of Control

Percent Control

	Spindletop		Murray	
	TN90	KT210	TN90	KT215
Treatment	<u></u>	%		
UTC	0 a	0 a	0 a	0 a
Standard	99 b	99 b	99 b	99 b
10% Button	97 b	97 b	99 b	99 b
50% Button	97 b	99 b	99 b	99 b
10% Bloom	95 b	99 b	98 b	99 b
p-value	<.0001	<.0001	<.0001	<.0001

Chemical Topping Timing: 2015 Total Yield for Murray and Spindletop

32016(47) - Document not peer-reviewed

Ideal Chemical Topping System

- Chemical solution applied in one application
- Topped terminal bud and inhibited sucker growth
- No adverse effects on yield, quality, and leaf chemistry
- Similar cutting, housing, and stripping as traditional topping

Summary

- Significant differences for rate and timing studies detected:
 - Total Yield
 - Number of suckers/plant
 - Total weight of suckers/plant
 - Average weight of suckers/plant
- Preliminary observations suggested prebud and early bud timings should be targeted
 - 10% bloom treatments have a flower
- Application must include MH
- This may be suited for late(r) maturing varieties of burley tobacco
 - More forgiving of timing of application
- A third study will be initiated soon:
 - Impact of chemical topping on gene expression

Thanks for the support from:

- Jeffrey Fellowship for Tobacco Research
- Altria Client Services
- Phillip Morris International
- Japan Tobacco Inc.
- Dr. Andy Bailey, Dr. Bob Pearce, Dr. Ling Yuan
- Bobby Hill, Chris Rodgers, and Jack Zeleznik
- Others- Will Barlow, Andrea Keeney, Raoni Pires, and Haylee Taylor

