Alternate Materials and their potential impact on HPHCs

Michael J. Morton

Nripa T. Jain, Kathleen H. Fox, Raquel M. Olegario, and Timothy L. Danielson

Altria Client Services

Alternate Materials

- For supply security and other reasons, it is common to have more than one supplier for a variety of cigarette materials and the materials are typically used interchangeably
 - The FDA considers each combination of materials to be a different product.
- Part of supporting the use of alternate materials is to verify that the HPHCs are comparable when using the different materials
- A designed experiment can provide an efficient and powerful tool for estimating the differences (if any) among HPHC yields resulting from use of the materials.

Alternate Materials (cont.)

- All are commercially available materials
 - Two plug wraps
 - Two base tipping papers
 - Two cigarette seam adhesives
 - Two tipping adhesives
 - Three filter tow materials
 - $2 \times 2 \times 2 \times 2 \times 3 = 48$ possible combinations
- Employed a fractional factorial design with 16 runs

Other design and analysis considerations

- Smoke analytes
 - 18 HPHCs on the FDA abbreviated list in addition to tar
 - ISO and Health Canada Intense (HCI) smoking regimens
 - 20 replicates for tar, nicotine, and carbon monoxide
 - 7 replicates for the remaining analytes
- ISO 17025 accredited laboratories carried out the analyses
- Replicates were interleaved
 - This mitigates confounding effects of lab drift
- A single design was used for all cigarettes
- All cigarettes constructed using the same batch of tobacco filler
- Multiplicity Effects
 - Carried out analysis with and without adjustment for the number of comparisons being made

Experimental Alternatives

- One-at-a-time experiment
 - Have a "base design" and change one material at time from that base
 - 7 combinations

	Run No.								
	1	2	3	4	5	6	7		
Plug wraps	Α	В	Α	Α	Α	Α	Α		
Tipping papers	Α	Α	В	Α	Α	Α	Α		
Seam adhesives	Α	Α	Α	В	Α	Α	Α		
Tipping adhesives	Α	А	Α	Α	В	Α	Α		
Filter tow	A	Α	Α	Α	Α	В	С		

Experimental Alternatives

- One-at-a-time experiment
 - Have a "base design" and change one material at time from that base
 - 7 combinations
- Designed Experiment
 - 16 combinations
- A designed experiment was chosen because it more efficiently estimates the potential effects.

Why are designed experiments more efficient?

• More of the data points are used in each estimated effect. For example:

Factor Le	vels in Exp	periment	Effect Estimates				
Α	В	С	A2-A1	B2-B1	C2-C1		
A1	B1	C1	-0.25	-0.25	-0.25		
A2	B1	C2	0.25	-0.25	0.25		
A1	B2	C2	-0.25	0.25	0.25		
A2	B2	C1	0.25	0.25	-0.25		
A2	B2	C1	0.25	0.25	-0.25		
A1	B2	C2	-0.25	0.25	0.25		
A2	B1	C2	0.25	-0.25	0.25		
A1	B1	C1	-0.25	-0.25	-0.25		

Standard Errors of Difference Estimates

 Comparison of standard errors of estimates comparing the alternate materials, where σ is the standard deviation of a test result:

	Designed Test	One Factor at a Time		
Tow	0.65σ			
Plug wrap	0.51σ			
Tipping Adhesive	0.51σ	1.41σ		
Sideseam adhesive	0.51σ			
Base tipping	0.51σ			

Results with Testing Multiplicity Effects

- 7 comparisons/analyte x 19 analytes x 2 regimens = 266 total comparisons
 - With α =0.05, on average, one expects 0.05 x 266 = 13.3 statistically significant effects.
 - There were 11 statistically significant differences prior to adjustment
 - After adjusting for multiple comparisons (using either Bonferroni or Benjamini-Hochberg) there were no statistically significant differences
 - The adjustment for multiple comparisons reduces power to detect differences – examining estimated differences is a way to mitigate the risk of having missed large estimated differences

Nominally Statistically Significant Results (Prior to Adjusting for Multiple Testing)

Least
Squares
Means
Estimated
Values

Blue indicates statistical significance prior to adjustment for multiple testing

Tip Ac	lhesive	Seam Adhesive		Base Tipping		Plug Wrap		Filter Tow		
A	В	A	В	A	В	A	В	A	В	C
	HCI Acrylonitrile (ug/cig)									
25.9	25.9	25.7	26.1	25.9	25.9	26.3	25.5	26.1	25.7	25.9
	HCI Benzene (ug/cig)									
95.0	94.4	94.1	95.3	94.5	94.9	96.2	93.1	95.4	93.6	95.0
	HCI Toluene (ug/cig)									
165	165	165	166	165	165	167	163	166	164	165
	ISO 2-Aminonaphthalene (ng/cig)									
15.7	16.1	15.7	16.0	16.2	15.5	16.0	15.8	15.8	16.3	15.5
				ISO Ac	etaldehyde	(ug/cig)				
804	798	805	797	787	814	799	803	805	794	803
	ISO Acrolein (ug/cig)									
79.3	78.9	79.4	78.8	77.7	80.4	79.0	79.1	79.3	77.9	80.0
	ISO Ammonia (ug/g)									
18.9	19.4	19.1	19.2	19.2	19.0	19.1	19.1	19.7	18.8	18.8
	ISO Benzo[a]pyrene (ng/cig)									
10.7	10.4	10.5	10.5	10.5	10.6	10.6	10.5	10.9	10.1	10.6
	ISO Crotonaldehyde (ug/g)									
21.2	21.3	21.3	21.2	20.7	21.8	21.3	21.2	21.3	20.7	21.7
	ISO Toluene (ug/cig)									
82.7	83.1	83.2	82.5	81.8	83.9	83.2	82.6	82.9	82.8	82.9

Conclusions

- A designed study is an efficient approach for evaluating the effects on HPHC yields of different materials
- Care should be taken to mitigate potential confounding effects such as lab drift, tobacco and other material differences
- When large numbers of comparisons are made some allowance must be made for testing multiplicity
 - One has to balance the risk of falsely claiming differences against the risk of missing important effects.
- In this instance after adjusting for testing multiplicity there were no statistically significant differences and all of the estimated differences were numerically small

Questions?