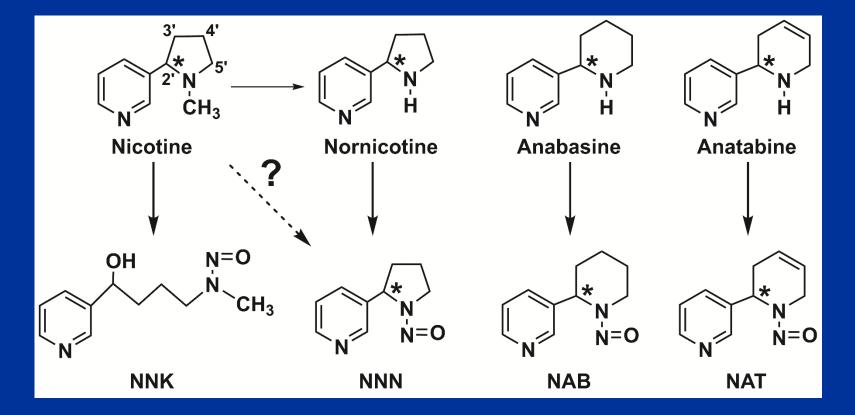
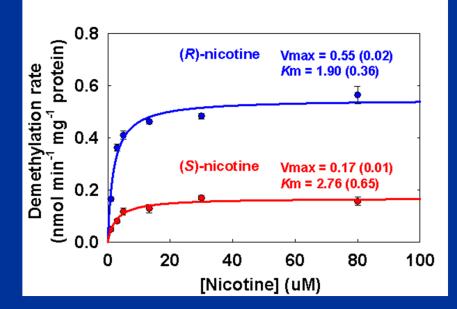

The enantiomeric composition of N'nitrosonornicotine in air-cured tobacco influenced by nicotine demethylation

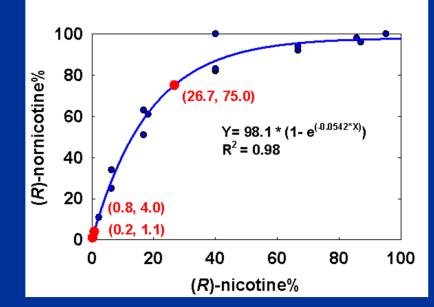
Bin Cai ^{1,2}, Huihua Ji ², Franklin F. Fannin ², Lowell P. Bush ² ¹ Guizhou Academy of Tobacco Science ² University of Kentucky 2017 TSRC


Alkaloids and TSNAs are all chiral compounds

(S)-NNN is more carcinogenic than (R)-NNN.


2

Overview of the nitrosation reactions leading to the TSNAs formation in tobacco leaf



Three nicotine demethylases reported: CYP82E4(E4), CYP82E5(E5) and CYP82E10(E10).

In vitro kinetics study of E4 demethylation

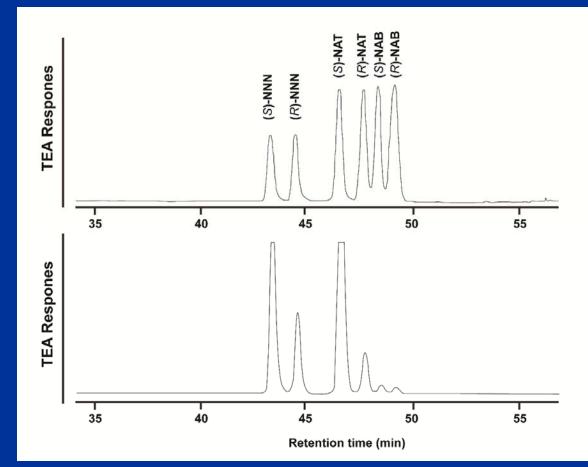
E4 shows preference for (*R*)-nicotine *in vitro.*

E4 alone can not produce 4-75% (*R*)-nornicotine percentage from 0.2% (*R*)-nicotine.

Questions

what is the contribution of nicotine and nornicotine to the accumulation of NNN present in triple mutant line (*e4e5e10*)?

What are the effects of three demethylases on enantiomeric compositions of TSNAs?

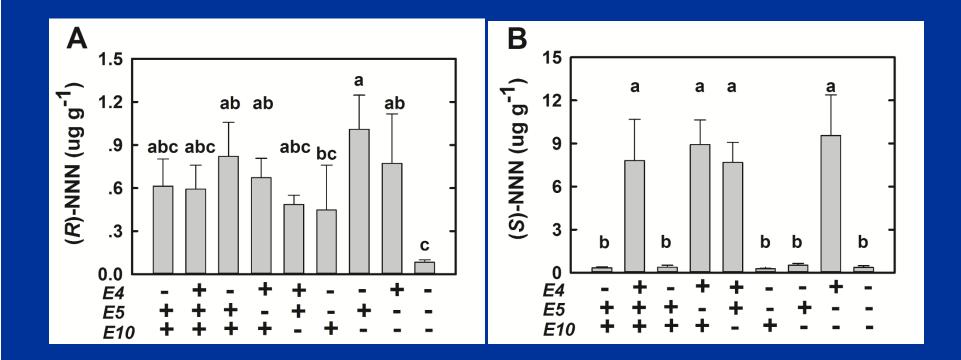

Experimental design

Tobacco lines with different combinations of three nicotine demethylases inhibited were grown in the field.

Air-cured leaves were analyzed for the concentration and enantiomeric composition of nicotine, nornicotine and NNN.

A gas chromatography/thermal energy analyzer method using two columns in series was developed to separate the enantiomers of NNN, N'-nitrosoanabasine, and N'-nitrosoanatabine.

NNN, NAT and NAB enantiomers were separated by a tandem column


Gas chromatography of standard solution (mixtures of racemic NNN, NAT and NAB) and a TSNA extract from reference cigarette 2R1 tobacco

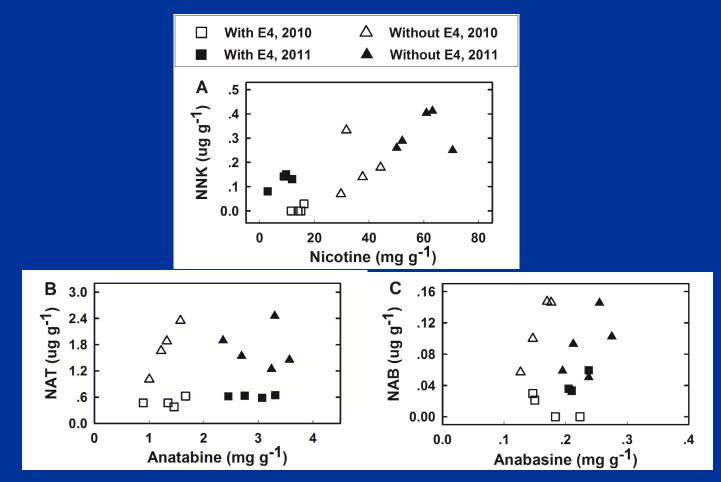
Enantiomeric compositions of nicotine, nornicotine, NNN, NAT and NAB in air-cured mutant lamina from 2011 field trial

Treatment				D mia0/	D nuic0/	D NININIO/		
	<i>E4</i>	<i>E5</i>	<i>E10</i>	R-nic%	R-nnic%	R-NNN%	R-NAT%	R-NAB%
2R1				0.5	30.0	29.5	15.2	41.3
1 R4 F				0.3	29.0	26.6	16.5	40.5
TN 90LC	+ ^s	+	+	$\boldsymbol{0.0\pm0.0}$	66.7 ± 2.2	63.5 ± 2.6	15.5 ± 0.6	42.4
Parent	+	+	+	0.1 ± 0.1	6.0 ± 0.7	7.3 ± 1.3	17.3 ± 3.8	39.9
e4E5E10	-	+	+	$\boldsymbol{0.0\pm0.0}$	70.5 ± 3.5	69.0 ± 3.2	18.4 ± 2.7	41.7
E4e5E10	+	-	+	0.1 ± 0.0	6.5 ± 0.4	7.0 ± 0.2	15.6 ± 1.4	41.0
E4E5e10	+	-	-	$\textbf{0.4} \pm \textbf{0.3}$	5.9 ± 0.2	6.0 ± 1.0	14.7 ± 1.2	36.3
e4e5E10	-	-	+	$\boldsymbol{0.4\pm0.0}$	65.2 ± 8.3	68.1 ± 0.4	17.1 ± 1.1	40.8
e4E5e10	-	+	-	0.1 ± 0.0	66.6 ± 3.6	66.5 ± 1.2	15.4 ± 0.4	44.8
E4e5e10	+	-	-	0.2 ± 0.1	$\textbf{8.0} \pm \textbf{0.4}$	7.3 ± 1.1	13.5 ± 0.8	37.5
e4e5e10	-	-	-	$\textbf{3.8} \pm \textbf{0.3}$	18.1 ± 2.5	19.3 ± 3.2	16.4 ± 0.9	40.8

(*R*)-NNN composition was almost the same as the (*R*)nornicotine. NAT and NAB composition has not been affected by the mutation of nicotine demethylase genes

NNN enantiomer accumulation in air-cured mutant lamina from 2011 field trial

Three nicotine demethylases affect (*R*)-NNN accumulation, and CYP82E4 influences (*S*)-NNN accumulation.


2017_TSRC74_CaiBin.pdf

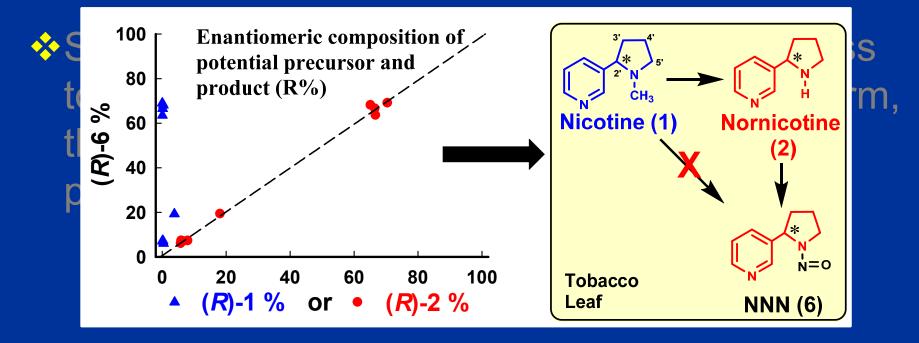
Nicotine, nornicotine and NNN levels in aircured lamina affected by different nicotine demethylase mutations

Treatment					Nicotine	Nornicotine	NNN
		<i>E4</i>	<i>E5</i>	E10	mg g ⁻¹	mg g ⁻¹	μg g ⁻¹
2010	E4E5E10	+	+	+	16.2 ± 3.5	24.80 ± 2.28	12.41 ± 3.75
	e4E5E10	-	+	+	$\textbf{29.7} \pm \textbf{7.7}$	$\textbf{0.88} \pm \textbf{0.22}$	1.16 ± 0.68
	E4e5E10	+	-	+	11.5 ± 1.7	20.86 ± 2.35	$\boldsymbol{8.99 \pm 3.42}$
	E4E5e10	+	-	-	15.0 ± 2.1	19.30 ± 4.00	10.18 ± 3.33
	e4e5E10	-	-	+	31.7 ± 2.5	$\boldsymbol{0.90 \pm 0.11}$	1.65 ± 0.50
	e4E5e10	-	+	-	37.6 ± 3.8	0.95 ± 0.11	1.59 ± 0.54
	E4e5e10	+	-	-	14.0 ± 0.5	18.34 ± 1.95	13.63 ± 3.91
	e4e5e10	-	-	-	44.2 ± 1.2	$\textbf{0.48} \pm \textbf{0.04}$	$\boldsymbol{0.75\pm0.11}$
	TN 90 LC ^a	+\$	+	+	70.5 ± 8.5	1.86 ± 0.12	$\boldsymbol{0.96\pm0.26}$
2011	E4E5E10	+	+	+	11.8 ± 3.5	44.99 ± 8.20	$\textbf{8.40} \pm \textbf{3.03}$
	e4E5E10	-	+	+	50.1 ± 5.2	1.63 ± 0.15	1.20 ± 0.38
	E4e5E10	+	-	+	$\boldsymbol{8.8 \pm 4.6}$	42.55 ± 2.68	9.60 ± 1.84
	E4E5e10	+	-	-	$\pmb{2.9 \pm 0.9}$	43.10 ± 4.92	$\textbf{8.16} \pm \textbf{1.42}$
	e4e5E10	-	-	+	52.1 ± 3.8	1.44 ± 0.21	$\boldsymbol{0.72\pm0.34}$
	e4E5e10	-	+	-	61.0 ± 8.5	1.53 ± 0.12	1.52 ± 0.37
	E4e5e10	+	-	-	9.6 ± 4.6	41.01 ± 2.73	10.32 ± 3.16
	e4e5e10	-	-	-	63.1 ± 3.9	$\textbf{0.40} \pm \textbf{0.03}$	$\textbf{0.44} \pm \textbf{0.14}$

10

Competition of Four Alkaloids for Nitrosation Reaction

The presence of CYP82E4 will decrease the sensitivity of the NNK, NAT and NAB to their corresponding precursors


Summary

A gas chromatography/thermal energy analyzer method using two columns in series was developed to separate the enantiomers of NNN, N'-nitrosoanabasine, and N'nitrosoanatabine.

In mutant lines, the concentration of NNN ranged from 0.44 μg g⁻¹ to 13.63 μg g⁻¹; (*R*)-NNN ranged from 0.08 μg g⁻¹ to 1.01 μg g⁻¹ and (*S*)-NNN from 0.34 μg g⁻¹ to 9.55 μg g⁻¹

Summary

Based on the pattern of the enantiomeric composition, nicotine is not involved in direct formation of NNN in air-cured tobacco and cigarette smoke.

Correlations between NNN and its putative precursors

Correlat	tion with NNN	Material			
Nicotine	+	Burley ¹⁵			
	r = 0.66 **	Air-cured burley ⁴			
	r = 0.49	Commercial tobacco product ⁴¹			
	r = 0.40 NS	Flue-cured tobacco ²			
	r = 0.29 * a	Air-cured dark tobacco leaf ⁷			
	r = 0.28 **	Air-cured Virginia tobacco ⁵			
	r = -0.65 *	Experimental cigarette 42			
Nornicotine	+	Burley ¹⁵			
	r = 0.95 **	Flue-cured tobacco ²			
	r = 0.52 **	Air-cured burley ⁴			
	r = 0.36 * a	Air-cured dark tobacco leaf ⁷			
	r = 0.10 NS	Air-cured Virginia tobacco ⁵			
Nitrate	r = 0.99 **	Experimental cigarette 42			
	r = 0.77 ** a	Commercial cigarette ⁴³			
	r = 0.77	Commercial tobacco product ⁴¹			
	r = 0.38 ** a	Air-cured , flue-cured, burley and dark tobacco 44			
	r = 0.27 **	Air-cured flue tobacco ⁵			
	$r = -0.01 \text{ NS}^{a}$	Air-cured dark tobacco leaf ⁷			
	r = -0.12 NS	Air-cured burley ⁴			
Nitrite	r = 0.82 **	Air-cured flue, burley and dark tobacco ⁴⁴			
	r = 0.77 **	Air-cured burley ⁴⁵			
	r = 0.42 ** a	Air-cured dark tobacco leaf ⁷			
	r = -0.28 *	Air-cured burley ⁴			

The results of this talk has been published (Cai, B.; Ji, H.; Fannin, F. F.; Bush, L. P. Contribution of nicotine and nornicotine toward the production of N 'nitrosonornicotine in aircured tobacco (*Nicotiana tabacum*). J. Nat. Prod. 2016, 79 (4), 754–759.)

TSRC2017(71) - Document not peer-reviewed

Summary

Based on the pattern of the enantiomeric composition, nicotine is not involved in direct formation of NNN in air-cured tobacco and cigarette smoke.

Since (S)-NNN is dominate form in smokeless tobacco and more carcinogenic than its R form, the reduction of (S)-nornicotine should be a priority for the reduction of NNN.

Thanks!