

Concept of characterization and certification of the 1R6F reference cigarette

<u>Socrates Jose P. Cañete¹</u>, Stacey A. Slone², Brent J. Shelton², Orlando Chambers¹

¹Kentucky Tobacco Research and Development Center, 1401 University Drive, Lexington KY 40546 ²University of Kentucky Markey Cancer Center – Core Support, 2365 Harrodsburg Road 40504, Lexington KY 40536

Funding for this research was made possible, in part, by the Food and Drug Administration through grant RFA-FD-14-001. The views expressed in written materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.

International ISO Standards followed

ISO Guide 34:2009 (ISO 17034:2016)

General requirements for the competence of reference material producers

ISO Guide 35:2009

Reference materials — General and statistical principles for certification

JCGM 100:2008 (revised version of GUM 1995)

Evaluation of measurement data — Guide to the expression of uncertainty in measurement

ISO-recommended approaches

- Approach A: single method in a single laboratory (better assessment of homogeneity)
- Approach B: Multiple methods in a single laboratory
- Approach C: a network of methods and/or laboratories (better estimate of the "true value")
- Approach D: Method-defined parameters (technically different methods)

Characterization of the 1R6F follows a hybrid approach between Approach A, Approach C and Approach D.

Working principles and assumptions

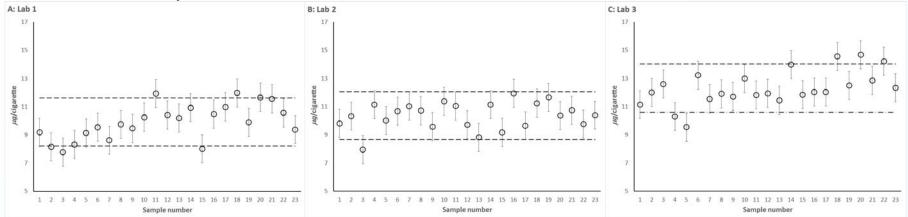
- A certified value represents the best estimate of the "true" value.
- Certified values are not expected to deviate from the "true" value by more than the stated measurement uncertainty.
- The mean of method/laboratory means is assumed to be the best estimate of the certified value.

FSRC2017(71)

Main model for characterization (single lab/method) (ISO guide 35)

$$U_{CRM} = k \sqrt{u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{sts}^2}$$

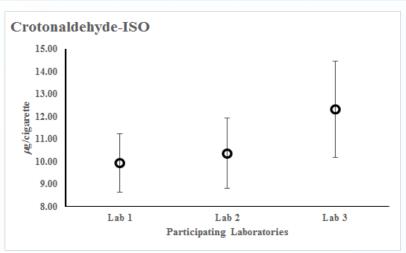
However, reference cigarettes are considered stable therefore the last 2 uncertainties relating to transport (short-term) and long-term storage stability were initially considered to be zero.

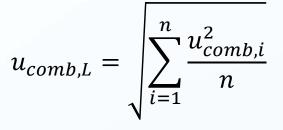

$$U_{CRM} = k \sqrt{u_{char}^2 + u_{bb}^2}$$

The u_{bb} signifies (and accounts for) the level of homogeneity as assessed by each laboratory while the u_{char} signifies (and accounts for) the level of dispersion/scatter in analytical results within that laboratory.

SRC2017(71

Single lab/method characterization of 1R6F Crotonaldehyde ISO

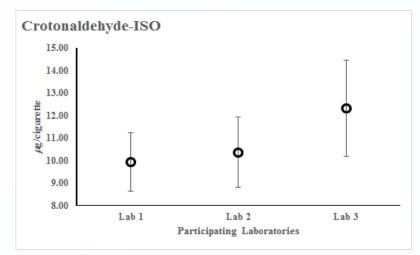



	Mean	u _{bb}	U _{char}	u _{comb,i}
Lab 1	9.926	0.508	0.406	0.651
Lab 2	10.365	0.743	0.231	0.778
Lab 3	12.320	1.031	0.295	1.073

$$u_{comb,i} = \sqrt{u_{char}^2 + u_{bb}^2}$$
$$U_{CRM} = k \sqrt{u_{char}^2 + u_{bb}^2}$$

Single lab/method characterization of 1R6F

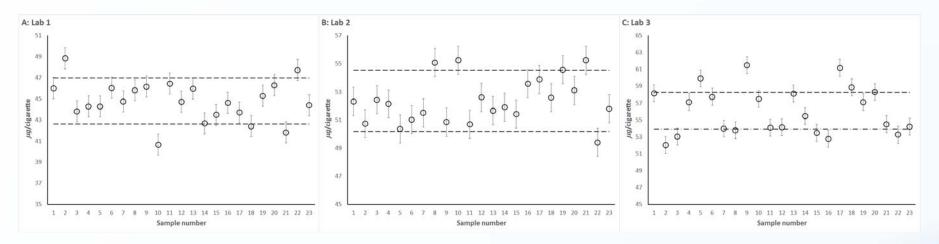
Crotonaldehyde in the ISO smoking regime										
	Mean	u _{bb}	U _{char}	U _{comb,i}	Within- lab combined uncertain ty (u _{comb,L})	Within-lab expanded uncertainty, k=2 (U _{CRM,i})	Combined Within-lab expanded uncertainty, k=2 (U _{CRM,L})			
Lab 1	9.926	0.508	0.406	0.651		1.301				
Lab 2	10.365	0.743	0.231	0.778	0.852	1.557	1.705			
Lab 3	12.320	1.031	0.295	1.073		2.145				



 $U_{CRM,L} = k \sqrt{u_{char}^2 + u_{bb}^2}$

"Overall" expanded uncertainty

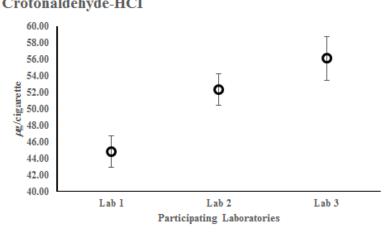
$$u_{CRM} = \sqrt{u_{fin}^2 + u_{comb,L}^2}$$


$$U_{CRM} = k \sqrt{u_{fin}^2 + u_{comb,L}^2}$$

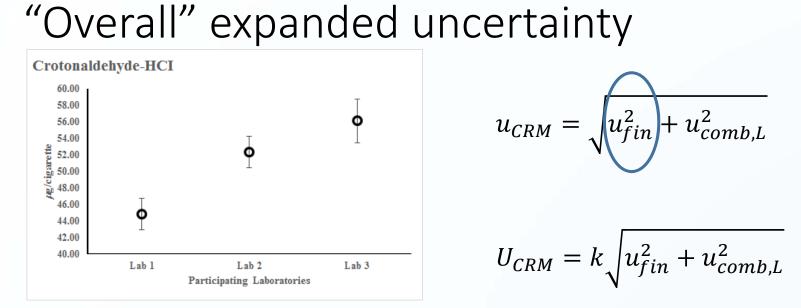
The u_{fin}^2 signifies dispersion in "assigned values", which demonstrate potential systematic effects

	Certified value (\overline{x})	u _{comb,L}	u_{fin}	u _{CRM}	<i>U_{CRM}</i> (k=2)
Crotonaldehyde-ISO	10.870	0.852	0.742	1.130	2.260

Single lab/method characterization of 1R6F Crotonaldehyde HCI


	Mean	u _{bb}	u _{char}	u _{comb,i}
Lab 1	44.798	0.834	0.486	0.966
Lab 2	52.356	0.831	0.478	0.959
Lab 3	56.105	1.096	0.713	1.308

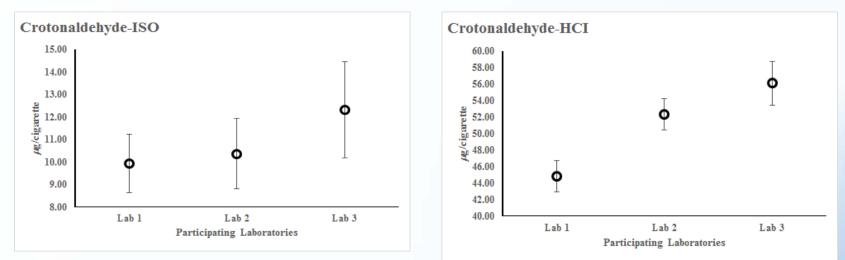
$$u_{comb,i} = \sqrt{u_{char}^2 + u_{bb}^2}$$


$$U_{CRM} = k \sqrt{u_{char}^2 + u_{bb}^2}$$

Single lab/method characterization of 1R6F

1B. Crot	tonaldehy Mean	de in the u _{bb}	HCI smokin U _{char}	g regime. U _{comb,i}	Within-lab combined uncertainty (u _{comb,L})	Within-lab expanded uncertainty, k=2 (U _{CRM,i})	Combined Within-lab expanded uncertainty, k=2 (U _{CRM,L})	$u_{comb,L} = \sqrt{\sum_{i=1}^{n} \frac{u_{comb,i}^2}{n}}$
Lab 1	44.798	0.834	0.486	0.966		1.931		
Lab 2	52.356	0.831	0.478	0.959	1.090	1.918	2.179	
Lab 3	56.105	1.096	0.713	1.308		2.615		$U_{CRM,L} = k \sqrt{u_{char}^2 + u_{bb}^2}$
	Crotonaldehyde-HCI							

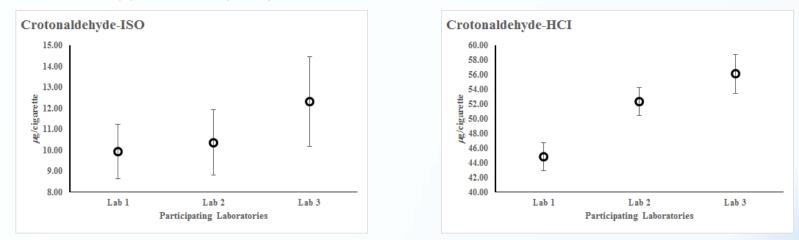
The u_{fin}^2 signifies dispersion in "assigned values", which demonstrate potential systematic effects


	Certified value (\overline{x})	$u_{comb,L}$	u_{fin}	u _{CRM}	U _{CRM} (k=2)
Crotonaldehyde-HCI	51.0861	1.090	3.319	3.494	6.987

Coverage factor, k(ISO Guide 35)

Determine a coverage factor \underline{k} to obtain an expanded uncertainty U, for which it may be assumed that the interval [x - U, x + U] contains a large fraction of the distribution of values that could reasonably be attributed to the characteristic being certified.

The choice of a coverage factor should be based on the required level of confidence (often 95 %), and (<u>if applicable</u>) the number of degrees of freedom.



Note: Each lab analyzed 23 to 48 samples with 3 to 8 replicate analyses per sample; i.e. high degrees of freedom for each lab.

FSRC2017(71) - Dod

Coverage factor, k (JCGM 100:2008)

When the probability distribution characterized <u>approximately normal</u> and the effective <u>degrees of</u> <u>freedom is of significant size</u> one can assume that taking <u>k = 2</u> produces an interval having a level of confidence of approximately 95 percent, and that taking <u>k = 3</u> produces an interval having a level of confidence of approximately 99 percent.

Occasionally, one may find that a known **correction** *b* **for a systematic effect has not been applied** to the reported result of a measurement, <u>but instead an attempt is made to take the effect into</u> <u>account by enlarging the "uncertainty" assigned to the result</u>. **This should be avoided**; <u>only in very</u> <u>special circumstances should corrections for known significant systematic effects not be applied to the result of a measurement.</u>

Acknowledgement: FDA-CTP for funding

Thank you for your attention!

