Genetic Strategy for Reducing Sucker Pressure in Tobacco

Shen Y.; Kudithipudi C.; Yang J.; Xu D.; Frederick J.; Warek U.; Strickland J.

Altria Client Services, 601 E. Jackson Street, Richmond, VA 23219

Tobacco Suckers

What are Suckers?

Side branches that grow after apical meristem removal (topping). Suckers divert nutrition and impact leaf quality

Current Control Methods

- Manual removal (labor intensive)
- Chemical application

Objective

To develop plants with reduced suckering potential by delivering cell death genes driven by sucker specific promoters

To evaluate sucker control plants in a greenhouse and field setting

Axillary Bud Specific Genes Screening

#1 #15 #2 TUBLIN

Three Genes Specially Expressed in Axillary Buds After Topping

Promoters from Axillary Bud Specific Genes

Varied Level of Expression and Specificity with GUS

Specific Expression of Cell Death (cd) Gene

Promoter

WT Control Plant

Cell Death Gene

cd Gene Transgenic Plant

Three Weeks Post Topping Suckers

Sucker Growth Was Inhibited

Cross Section of Non-viable Tobacco Seed

WT

p15:cd

No Mature Embryo in Transgenic Lines With p15

Promoter Leakage Impacts Seed Development

P#15 :: GUS mature capsules and stigma/anthers after staining

Promoter Expressed in Seeds

P#1 2.5kb:: GUS Assay Shows No Leakage to Seeds

P#1 2.5kb::GUS plant: capsules and stigma/anthers after staining

Promoter Expressed in Seeds

Promoter Leakage Impact Plant Development

P1-2.5 Promoter Cause Leaf Abnormality

ress2018 - Document not peer-reviewed by COF

Sugar Repressive Element was Removed to Increase Specificity

Cis-elements

BDE Bud dormancy element (CACGTG)

SRE Sugar repressive element (TTATCC)

UP2 Axillary bud up2 (AAACCCTA)

Reference: Gonzales-Grandio et al., 2013 Tatematsu et al., 2005

P1 Promoter After Topping GUS Activity

P#1-2.5::GUS

P#1-2.4::GUS

T1 Generation of P#1-2.5::GUS plant vs P#1-2.4::GUS plant

P1-2.4 Has Higher Specificity and Expression Level

TO Generation With Modified Promoter

P#1-2.4::cd T0 plant Line-23 shows no bud initiate

T1 Greenhouse Evaluation for Sucker Reduction

Wild type

Line 23-6

P#1-2.4::cd T1 generation 0h post topping

aress2018 - Document not peer-reviewed by CORESTA

T1 Greenhouse Evaluation for Sucker Reduction

Wild type

Line 23-6

P#1-2.4::cd T1 generation 4 weeks post topping

T1 Field Evaluation for P1-2.4 Plants

T1 Field Evaluation for Two Weeks

WT

L7

L23

T1 Field Evaluation for Four Weeks

4 WK

Topping point

T2 P1-2.4 L7 Plants Show Diverse Phenotypes

Conclusion

- Expression of cell death gene with a sucker specific promoter is an effective strategy for sucker control
- In-depth promoter analysis is required to optimize the promoter specificity and activity
- The cell death gene in combination with a highly effective and efficiently modified promoter will lead to the development of sucker inhibited commercial lines

Reducing risk. Expanding choice.

Altria.

For copies of this presentation visit the Altria's Science Website at www.altria.com/alcs-science

