ONE MORE TIME: UNPROTONATED NICOTINE IN E-CIGARETTE AEROSOLS: IS IT REALLY THERE?

J.H. Lauterbach, Ph.D., DABT, Lauterbach & Associates, LLC, Macon, GA 31210-4708 4708

Outline for presentation

- Nicotine in mainstream cigarette smoke (MSS) versus nicotine in e-cigarette aerosols
- pH values of e-liquids and e-cigarette aerosols
- Nonvolatile acids in e-liquids
- Experimental details and results
 - Aerosol pH determinations
 - Nicotine uptake by artificial saliva exposed to e-cig aerosols
- Unprotonated nicotine in e-cigarette aerosols
- Sensory
- Conclusions

Nicotine in MSS versus e-cigarette aerosols

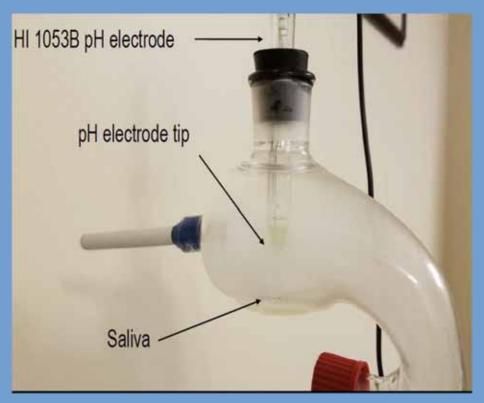
- Key features of MSS
 - More than enough CO₂ and H₂O (GVP and PP) to give nascent H₂CO₃ to overcome basicity from NH₃ and nicotine
 - Numerous organic acids
 - Fats and waxes make smoke lipophilic
- Key features of e-cigarette aerosols (before "salts")
 - No CO₂ other than atmospheric (~ 400 ppm)
 - H₂O reported to be ~ 15% of TPM (aka ACM)
 - Little acidic material unless added to e-liquids as flavors
 - Nicotine in aerosol believed to be unprotonated based on pH determinations of aqueous solutions of e-liquids

pH values: e-liquids and e-cigarette aerosols

- pH values of concern by analogy to flawed reports of physiologically important levels of nicotine in MSS
- Pankow et al., Chem. Res. Toxicol., 31, 431-434
 - Explanation of why published techniques for the determination of pH values of e-liquids gave inaccurate results
 - Reported ¹H NMR procedure to estimate unprotonated fraction of nicotine (α_{fh}) in e-liquids and aerosols
 - Requires expensive instrumentation, skilled technicians
 - Gave α_{fb} of ~0.06 for JUUL e-liquids; others 0.68 to 0.84
 - Post vaporization α_{fb} similar to those of e-liquids
- Is something else going on?

Nonvolatile acids in e-liquids

- US 9,215,895, Nicotine salt formulations ...
 - Bowen and Xing, 2015, assigned to PAX Labs, Inc.
 - Nicotine salt formulations where acid used has vapor pressure >200 mm Hg at 200° C
 - Acids used to form salts include benzoic, citric, levulinic, pyruvic, and salicylic (typically 2 to 4% in e-liquid)
 - Claims rapid rise in blood nicotine typical of conventional cigarette, and much faster than e-liquid without acid
- Benzoic acid known to be used commercially
 - Easy to use in making your own e-liquids
 - Malic, quinic, and vanillic also work 1:1 with nicotine


Experimental details – 1

- L&ALLC Model IIIb μ -processor-controlled, constant-vacuum, square-wave e-cigarette puffing system; puffing regimen of 55/3/30 (CORESTA Recommended Method No. 81)
- Flow control by Swagelok SS-4MG-SL 10-turn metering valve acting as critical flow orifice
- Flow checked with Sigma-Aldrich 20414 500-mL bubble meter with Cerulean SC#59138 Restrictor 10CSM (calibrated)(1 kPa)

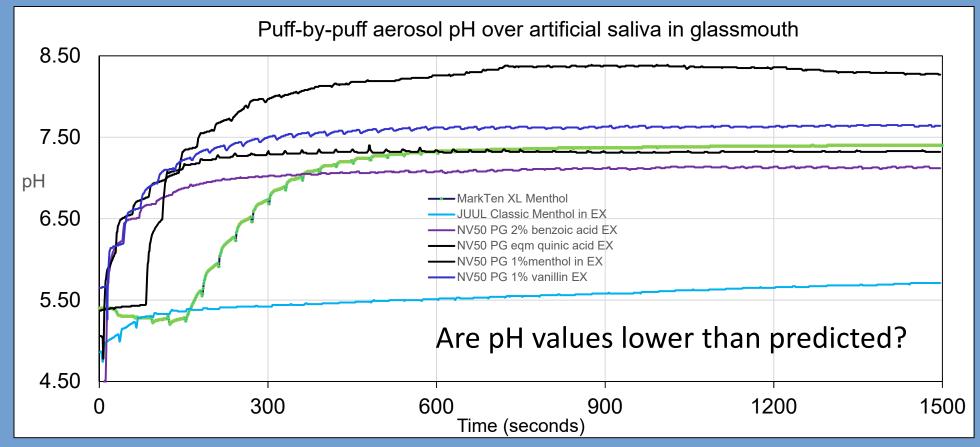
- pH-Instrumentation Hach H260G meter with Hanna Instruments HI 1053B (conical) pH electrode
- Hach Data Logger software (running under Windows 10 Pro) used to acquire and process pH data
- Saliva (Pickering 304) exposure done in glassmouth (Honeycutt, B&W, 1985, http://industrydocuments .library.ucsf.edu/tobacco/docs/jfbp0135) modified with depression (≈10 mL) for saliva and top port for pH probe, 50 puffs/run (25 puffs/run for initial assessments)

72 TSRC 90

Experimental details – 3

NV50 aerosol pH in glassmouth with saliva

7.50


pH
6.50

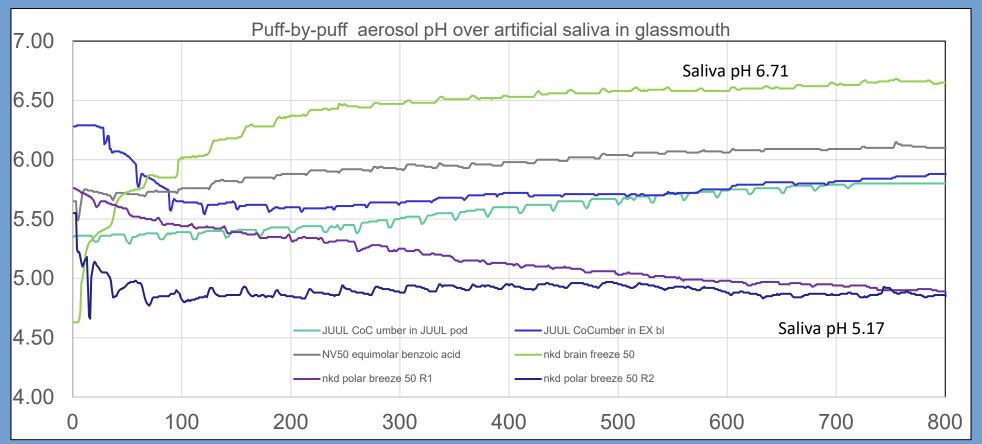
— pHno PA
— ph PA

5.50

Time (Seconds)

Glassmouth trap with Conical tip electrode

Unexpected results 2: saliva pH


Device or e-liquid in EX cartomizer	Aerosol pH	Saliva pH
MarkTen XL Menthol	7.40	7.11
JUUL Classic Menthol in EX	5.71	6.69
NV50 PG 2% benzoic acid EX	7.12	7.08
NV50 PG equimolar quinic acid EX	7.32	7.08
NV50 PG 1% menthol in EX	8.27	7.75
NV50 PG 1% vanillin EX	7.64	7.60

10

Hypotheses on what may be happening

- Atmospheric CO₂ may lower aerosol pH values
 - A study with e-liquids of known composition showed the ACM (~TPM) contained about 15% water
 - Supporting information for Pankow et al. shows how atmospheric water may affect pH results obtained after water dilution of e-liquids
- Solid acids (e.g., benzoic) apparently do not volatilize when e-liquids are vaped and result in decreased aerosol pH values as determined in glassmouth
- Aerosol pH values then similar to those of MSS

Some more puff-by-puff data

72 TSRC 90

LAUTERBACH & ASSOCIATES LLC

Unprotonated nicotine in e-cig aerosols

- Estimates of percent unprotonated nicotine in GVP can be made using the following equations
 - $K_{p,nicotine} = (f_{om}760RT)/(MW_{om}\gamma_{nicotine}p_{Lo,nicotine}10^6)$
 - $-P_{g,nicotine}(\%) = 100\%\{1/(1 + K_{p,nicotine}TSP)\}$
- Estimates of MW_{om} can be made using data from CORESTA EVAP study of ACM weight, composition
 - MW_{om} \approx 52 g/mol, TSP \approx 9.76 x 10⁷ μ g/m³, $f_{om} \approx$ 1
 - $K_{p,nicotine} \approx 1.67 \ x \ 10^{-5}$, $log \ K_{p,nicotine} \approx -4.78$
- γ_{nicotine} would need to be > 20 for $P_{g,\text{nicotine}}(\%) > 1\%$
 - Similar values have been reported for nicotine in water
 - Banyasz, The Physical Chemistry of Nicotine (1998)

Sensory

- Neither the NMR instrument nor the pH electrode in the glassmouth are representative of human vaping experiences
- However, analyses of aerosol constituents absorbed by the saliva should aid in understanding the sensory properties of the aerosols and the e-liquids from which they are generated
- Addition of benzoic acid reduces irritation, but can also give an off-taste

Conclusions

- Use of the glassmouth for the determination of aerosol pH appears to give the same information on nicotine protonation as given by more complicated and expensive techniques
- Estimations based on the weight and composition of the ACM during machine vaping of e-cigarettes can be used to estimate unprotonated nicotine in the gasvapor phase (GVP) of e-cigarette aerosols