Agronomic Practices to Reduce Alkaloids in Dark Fire-Cured Tobacco

Ryan Brown; Eric Walker; Andy Bailey
University of Tennessee
University of Kentucky

Dark Fire-Cured

- Firing process
- Used mostly in smokeless products

- Health risks appear to be less than risks from smoking
- FDA proposals on future chemistry of tobacco products
- Strong, sustained efforts in TSNA reduction from various disciplines

t peer-reviewed

Introduction

- Agronomic factors affecting alkaloid production:
 - Variety selection
 - Nitrogen rate
 - Topping timing
 - Water availability

Varietal Effects

- Genetics prove to be most influential on both chemical and physical properties of cured leaves
- Varieties have been noted as having the most effect on nicotine production

- Nitrogen is an important nutrient for tobacco production
 - Relatively high N rates for optimum yields
- Increased nitrogen rates could lead to excess nitrogen
 - Nitrosating agent
 - Possibly lead to more TSNAs

eer-reviewed

Topping

- Topping time and height can affect nicotine
- Topping triggers nicotine production in roots
- Harvest interval is critical to alkaloid levels
 - Longer intervals = higher alkaloids
 - Shorter intervals = fewer alkaloids

not peer-reviewed

Water Availability

- Rainfall affects production of alkaloids in various ways
 - Drought stress
 - Roots
 - Leaching
- Wetter soil conditions lead to decreased alkaloid production compared to drier conditions due to reduced root mass

Justification for Research

- Harm reduction
- Create an alkaloid profile of LC and LI varieties under certain agronomic factors
- Would there be a market for low alkaloid products if the quality is right?
 - Diet drinks
 - Decaffeinated coffee

Objective

 Evaluate the effects of agronomic practices on a conventional alkaloid dark tobacco variety and a low intermediate dark tobacco variety

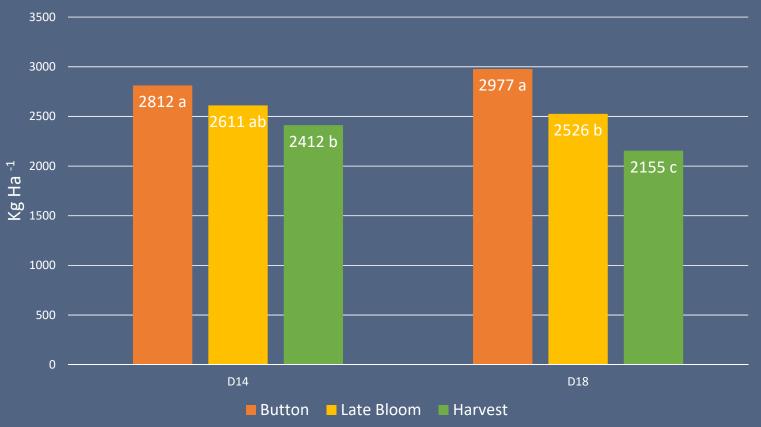
Materials & Methods 2016

- Springfield, TN (HRREC)
- 24 Treatments X 4 Replications
 - Split-plot with factorial treatment arrangement
- 2 Varieties:
 - KT D14 LC normal alkaloid level
 - KT D18 LI low intermediate alkaloid level

Materials & Methods 2016 cont.

- Nitrogen Fertility
 - 84 kg/ha⁻¹
 - 196 kg/ha⁻¹
- Topping Stages
 - Early button stage
 - Late bloom stage
 - Immediately prior to harvest
- Sucker Control
 - Fatty alcohol
 - Hand-suckered

Materials & Methods 2017

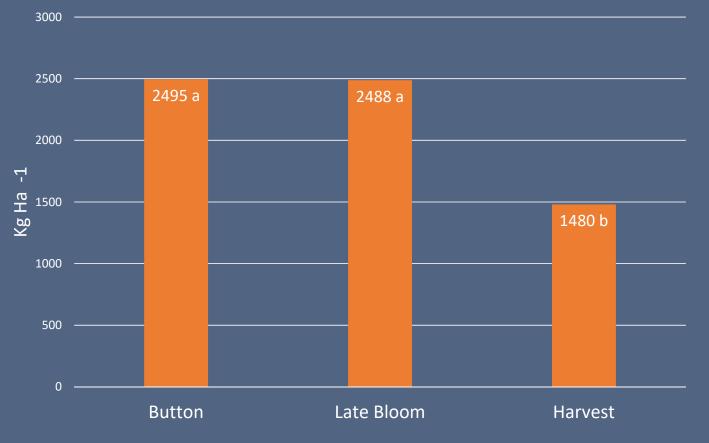

- Springfield, TN and Princeton, KY (UKREC)
- Eliminated hand-suckered treatments
 - All other variables were same as 2016
- 12 Treatments X 4 Replications
 - Randomized complete block with factorial treatment arrangement

cument not peer-review

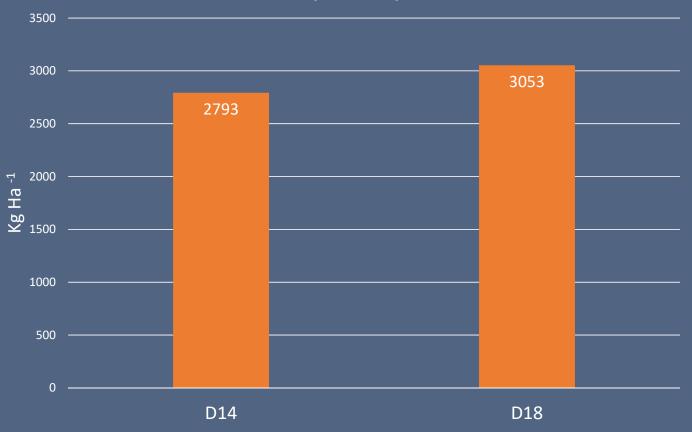
Data Collected

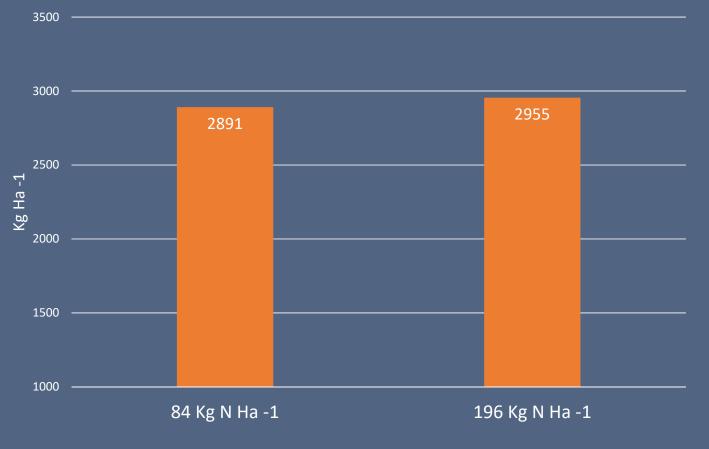
- Yield
- Grade
- Total Alkaloids
- TSNAs
- Data subjected to analysis of variance (SAS)
 - 5% level of significance

Cured Leaf Yield by Variety*Topping Stage – HRREC 2016


Cured Leaf Yield by Nitrogen Rate – HRREC 2016

Cured Leaf Yield by Variety*Nitrogen Rate – HRREC 2017


Cured Leaf Yield by Topping Stage – HRREC 2017


Cured Leaf Yield by Topping Stage – UKREC 2017

Cured Leaf Yield by Variety – UKREC 2017

Cured Leaf Yield by Nitrogen Rate – UKREC 2017

Grade Index – HRREC 2016

Variety		
D14	D18	
35	41	

Grade Index – HRREC 2016

Topping Stage		
Button	Late Bloom	Harvest
41 a	43 a	30 b

Grade Index – HRREC 2017

Variety*Topping Stage		
	D14	D18
Button	65 a	58 a
Late Bloom	63 a	59 a
Harvest	36 c	48 b

Grade Index – UKREC 2017

Variety		
D14	D18	
43	38	

Grade Index – UKREC 2017

Topping Stage		
Button	Late Bloom	Harvest
48 a	40 ab	33 b

- D18 yields and grades are comparable to D14
- 2017 samples are being ground for processing
- Leaf chemistry analysis to be performed by Altria Client Services

- Studies will be repeated in 2018 for dark fire-cured
- Beginning similar studies for burley tobacco in 2018

Acknowledgements

- Altria Client Services
- University of Tennessee Highland Rim Research and Education Center
- University of Kentucky Research and Education Center at Princeton