

AN EXAMPLE OF SUSTANAIBILITY: FATTORIA AUTONOMA TABACCHI FOR A MORE SUSTAINABLE TOBACCO CROP

BARGIACCHI E.⁽¹⁾, ROSSI F. ⁽²⁾, MANENTI F. ⁽³⁾, MILLI G. ⁽²⁾, BURLA G. ⁽⁴⁾, MIELE S.⁽¹⁾

- (1) Italian InterUniversity Consortium for Science & Technology of Materials, INSTM, I-50121 Firenze (Italy) ebargiacchi.agr@instm.it smiele.agr@instm.it
- (2) Fattoria Autonoma Tabacchi (FAT), I-06012 Città di Castello (Italy)
- (3) Politecnico di Milano, Dip. di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Milano
- (4) Trasformatori Tabacco Italia (TTI) I-06012 Città di Castello (Italy)

ACTION PLAN

- Increase energy use efficiency
- Adopt a sustainable mix of renewable and fossil energy production
- ➤ Invest in best use of water: remote sensing & wise application
- > Change the habits in order to reduce waste and pollution

The concept of SUSTAINABILITY: conserving an ecological balance by avoiding depletion of natural resource

THE FATTORIA AUTONOMA TABACCHI – ITALY MODEL FOR TOBACCO SUSTAINABLE ENERGY

RENEWABLE ENERGY SYSTEM OF PRODUCTION (Units at facilities of the Growers' Association)

- > Photovoltaics
- Chopped wood
- > Anaerobic digestion for biomethane/hot water

Renewable Energy Contribution vs. Total

	kWh	%
Energy Yearly production from Photovoltaic	12.067.800	9,78%
Energy Yearly production from Anaerobic Digestion	21.968.000	17,80%
Energy Yearly production from chopped wood, included hot water	17.474.600	14,16%
Total Energy from renewable energy	51.510.400	41,74%
Total Energy from fossil sources	71.888.276	58,26%
Total required energy to cure and process tobacco	123.398.676	100,00%

Photovoltaics

9 curing units of the cooperatives + Factory + curing units belonging to the growers: for a total production of 12,067,800 kW/year

Chopped wood

3 combustion plants supplying heat and power to 162 curing units:

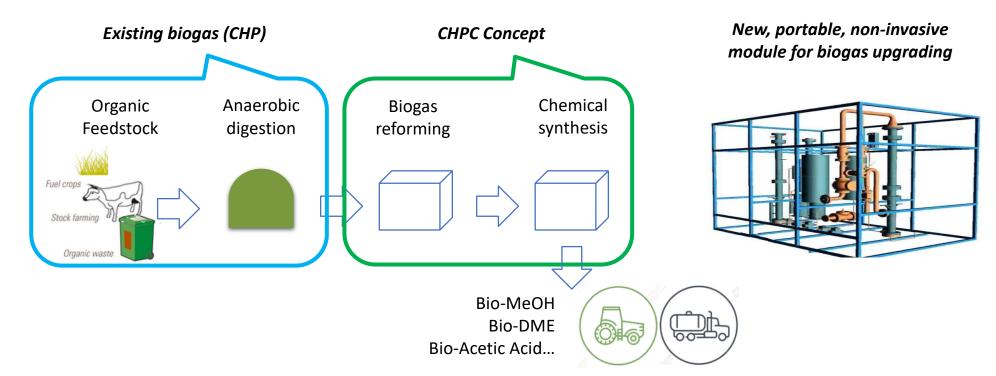
17,474,600 kWh = 1,800,000 kg of cured tobacco

- Chopped wood comes from coppice or maintenance of coniferous woods: for fire prevention → no need of reforestation
- Circular economy opportunity with Growers and Farmers

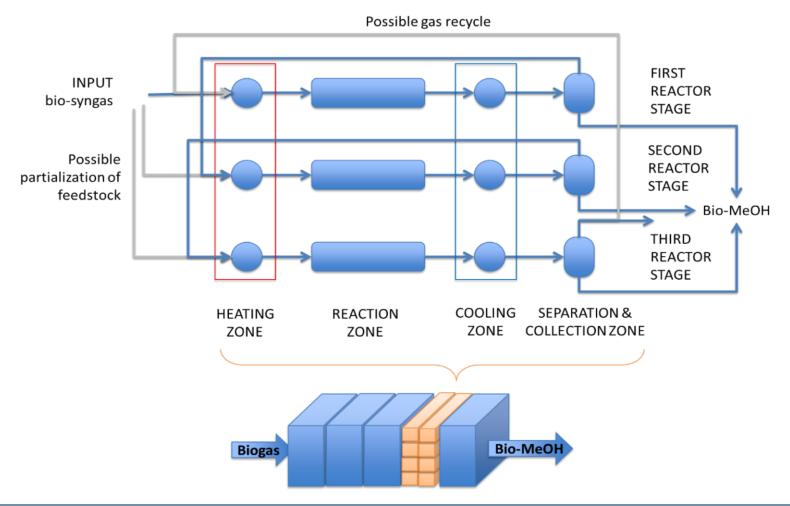
Anaerobic Digestion Plants for Biogas

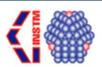
- 3 units for a production of 21,968,000 kW/year;
- 34 curing units running with hot water (engine and exhausted pipe cooling):

500.000 kg of cured tobacco



The BIG SQUID™ module


BIoGaS-to-liQUID (BIG SQUID™)



Advances (Priority: 102017000073797, June 2017)

Further Benefits of Anaerobic Digestion

Exhausted material (liquid and solid) can be used as a manure: less mineral fertilizers and related depletion of fossil sources

Exhausted material: Type	Corn Yield: T/ha	Exhausted material %	Digested material T/ha	Total N: %	N: Yearly availability %	N: kg/ha from Digested material
Liquid	51,8	44,6	23,1	0,49	50	57
Solid		13,6	7,0	0,36	50	13
Total	51,8	58,1	30,1	0,46	50	69

Further Benefits of Anaerobic Digestion

Exhausted material (liquid and solid) can be used as a manure: less mineral fertilizers and related depletion of fossil sources

Filtered, liquid digested material is applied in fertigation to field tomato and organic tobacco

Further Benefits of Anaerobic Digestion: hot water

Greenhouses for tobacco seedling production can be used during winter time with hot water for vegetable production (e.g. lettuce and bell pepper)

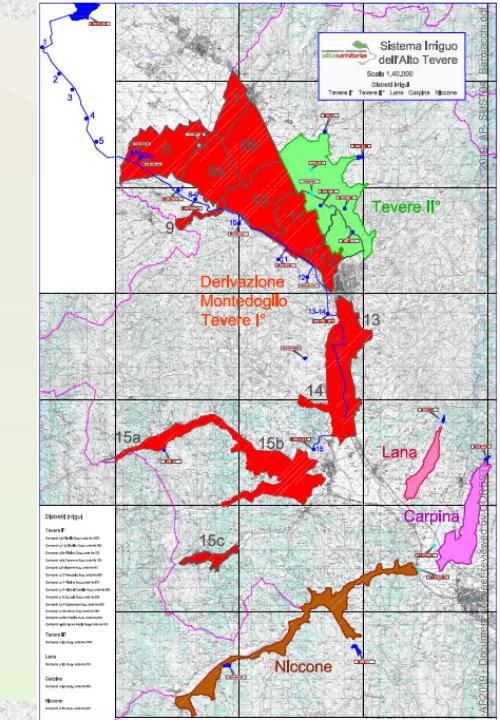
→ EXTRA INCOME FOR THE FARMERS

INFRARED THERMOMETERS

- They can be used to measure a crop's surface temperature remotely
- This surface temperature can be correlated to plant water stress assuming that, as a crop transpires, the evaporated water cools the leaves below that of air temperature
- However, as the crop becomes water stressed, transpiration will decrease, determining an increase of leaf temperature (Jackson, 1982)

PCE 300 IRT (www.pce-italia.it)

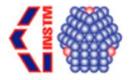
MILLI G., MIELE S., BARGIACCHI E., 2012. *Infrared thermometers to tune tobacco irrigation at farm level*. CORESTA Congress, Sapporo, Sept. 23-26, 2012, AP18.


INFRARED THERMOMETERS

CONCLUSIONS OF CALIBRATION TESTS 2010-2011

- Indirectly, measuring leaf temperatures, as compared to air temperatures, the water status of the soil can be determined, thence when it is necessary to begin irrigation.
- ▶ IRT measurements of leaves in full sun, carried out at noon or soon after (11:00-16:00 solar time), are in good correlation with Tensiometers, and can be used to determine best time for irrigation, on a field basis.
- ◆ This technique is relatively unexpensive, easy, user's friendly for growers, and avoids empiricism in the irrigation technique, therefore leading to a better water use efficiency.

MIDAR Project in progress


- To determine by remote sensing water stress and cross-checked with proximal sensing
- Best time to irrigate
- Best techniques: microirrigation
- Control of the water use by agriculture in the area

Miscellanea

- 1) BURLA G., MILLI G., MIELE S., BARGIACCHI E., 2013. Evolution in tobacco crop agrochemical use over the last 30 years to reduce leaf residues, and environmental impact. CORESTA 2013 Agro-Phyto Meeting, Brufa di Perugia
- 2) MILLI G., MIELE S., BARGIACCHI E., ROMANI A., 2013. Approaching the first station on the way to certified organic tobacco: (almost) chemical-free tobacco. CORESTA 2013 Agro-Phyto Meeting, Brufa di Perugia
- 3) MILLI G., MIELE S., BARGIACCHI E., ROMANI A., 2013. Effects of legume cover crops on soil characteristics and Virginia bright tobacco fertilization. CORESTA 2013 Agro-Phyto Meeting, Brufa di Perugia
- 4) MIELE S., BARGIACCHI E., MILLI G., 2013. A biobed to recover and detoxify polluted external washings of ag equipment used for tobacco treatments. CORESTA 2013 Agro-Phyto Meeting, Brufa di Perugia, web-Proc.
- 5) CAMPO M., ROMANI A., MIELE S., BARGIACCHI E., 2013. A non-invasive optical method for quality control of maturing and cured tobacco leaves. CORESTA 2013 Agro-Phyto Meeting, Brufa di Perugia
- 6) MILLI G., BARGIACCHI E., MIELE S., 2014. Comparative tests among nematode agrochemicals and alternative products on Virginia Bright tobacco. CORESTA Congress Quebec (Canada) Oct. 10-17, 2014, presentation AP07, CORESTA web.
- 7) MIELE S., TEGLI S., GARCIA IZQUIERDO C., CERBONESCHI M., BARGIACCHI E., 2019. Hydrolysable tannins in agriculture. In: Tannins Structural Properties, Biological Properties and Current Knowledge. DOI: http://dx.doi.org/10.5772/intechopen.86610.

Thank You for Your attention!