

ASSESSMENT OF WITHIN-PACKAGE AND LOT-TO-LOT VARIABILITY ASSOCIATED WITH QUARTZ COLLECTION PADS IN THE DETERMINATION OF METALS IN AEROSOL

Presentation ST30

<u>Wendy Wagstaff</u>, Peter Joza, Angel Rodriguez-Lafuente

2019 CORESTA Smoke Science/Product Technology Conference

October 6-10, 2019 Hamburg, Germany

LABSTAT INTERNATIONAL INC. 262 Manitou Drive Kitchener, Ontario, Canada N2C 1L3 Phone: (519) 748-5409 Fax: (519) 748-1654 Web: www.labstat.com

October 9, 2019

Background and Objectives

- Study Design
 - Analysis of Quartz Pads
 - Statistical Analysis Methodology

Analytical Results

Interpretation of Data

Summary

Future Applications

□ Continuation of work introduced at 2016 CORESTA Congress

- An Alternative Strategy for the Determination of Metals in the Aerosol from Electronic Cigarettes
- Developed Method for collection of aerosol using quartz pads
 - Pre-washed quartz filter pads, containing no binders, specifically designed for the analysis of metals
 - initial method development work identified factors such as quartz pad lot and quartz pad package within lot as potential factors affecting overall method variability
 - identified location of quartz pad within package (i.e. close to packing material) as a potential contributor of background metals contamination

Objectives

- Quantify levels of 20 metals in untreated quartz pads from various lots and packages over an extended period of time
- Perform statistical analysis on the data
 - Quantify lot-to-lot variability, package-to-package variability and withinpackage variability for each of 20 metals
- Use statistical analysis findings to assess potential limitations in determination of differences between metals measured in ENDS product aerosols and collection (air) blanks

Study Design – Analysis of Untreated Quartz Pads

SSPT2019 - Document not peer-reviewed by CORESTA

_abstat

- □ Data collection occurred over a 1+ year period
- Statistical Analysis: Multifactor Analysis of Variance (ANOVA)
 - Factors: (1) quartz pad lot and (2) quartz pad package within lot
 LOT = {1 (R7CA61558), 2 (R7HA53231), ..., 10 (R8PA50484)}
 PACKAGE = {1, 2, 3, ..., 190}

5 replicate pads/pack x 20 metals analytes ~ 19,000 data points

Lot 1 (R7CA61558)			Lot	2 (R7H	A532	231)	Lot 10 (R8PA504			84)				
Pack 1	Pack 2	Pack 3	Pack 4	Pack 5	Pack 6		Pack 24					Pack 188	Pack 189	Pack 190

 Since each lot has its own unique set of packages, PACK is a <u>nested</u> <u>factor</u> within LOT, designated as PACK(LOT) in all results

Analytical Results – Cadmium (Mean ± 95% C.I.)

.abstať

Analytical Results – Lead (Mean ± 95% C.I.)

Means by LOT

88MA29418

R8NA31305

RSPASOAS

R8187290

0.25

0.2

0.15

0.1

0.05

0

R10461558

R7HA53231

RT4458161

RTN433015

RTNAT200

88032066

Lead [ng/mL]

0.6

Means by **PACK**

.abstat

Analytical Results – Chromium (Mean ± 95% C.I.)

Analytical Results – Nickel (Mean ± 95% C.I.)

Source	DF	Sum of Squares (SS)	Mean Square	F- Value	Pr. > F	SS Ratio (%)	Res. SD (ng/mL)
LOT	9	4.07	0.452	14.5	<.0001	11.3%	
PACK(LOT)	180	8.18	0.045	1.46	0.0004	22.8%	
Residual	760	23.7	0.03			65.9%	0.177

Analytical Results – Aluminum (Mean ± 95% C.I.)

Source	DF	Sum of Squares (SS)	Mean Square	F- Value	Pr. > F	SS Ratio (%)	Res. SD (ng/mL)
LOT	9	51563	5729	581.4	<.0001	33.7%	
PACK(LOT)	180	93971	522	52.98	<.0001	61.4%	
Residual	759	7479	9.85			4.9%	3.14

Analytical Results – Zinc (Mean ± 95% C.I.)

Source	DF	Sum of Squares (SS)	Mean Square	F- Value	Pr. > F	SS Ratio (%)	Res. SD (ng/mL)
LOT	9	1501.6	166.8	384.5	<.0001	68.6%	
PACK(LOT)	180	358.1	1.99	4.59	<.0001	16.4%	
Residual	757	328.4	0.434			15.0%	0.659

Analytical Results – Iron (Mean ± 95% C.I.)

Analytical Results – Remaining Metals

_abstat

	Analyte	Source	DF	Sum of Squares (SS)	Mean Square	F- Value	Pr. > F	SS Ratio (%)	Res. SD (ng/mL)	
		LOT	9	0.014	0.00153	107.5	<.0001	24.0%		
	Selenium	PACK(LOT)	180	0.033	0.00018	12.8	<.0001	57.2%		Se < 1
		Residual	760	0.011	0.00001			18.8%	0.004	
		LOT	9	0.0003	0.000033	7.12	<.0001	4.9%		
	Silver	PACK(LOT)	180	0.0022	0.000012	2.70	<.0001	37.1%		Aa < 1 (
		Residual	759	0.0035	0.000005			58.0%	0.002	/ ·9 · L
		LOT	9	5.16	0.573	200	<.0001	26.3%		
	Tin	PACK(LOT)	180	12.3	0.068	23.9	<.0001	62.7%		Sn < 1
		Residual	759	2.17	0.003			11.1%	0.053	$\Im I < \Box$
		LOT	9	0.63	0.070	40.0	<.0001	6.1%		
	Tungsten	PACK(LOT)	180	8.46	0.047	26.7	<.0001	81.1%		
		Residual	760	1.34	0.002			12.8%	0.042	vv < LC

Se < LOD (0.024 ng/mL)

Ag < LOD (0.15 ng/mL)

Sn < LOD	(0.15	ng/mL)
----------	-------	--------

W < LOD (0.15 ng/mL)

Analytical Results – Remaining Metals

Labstat

Analyte	Source	DF	Sum of Squares (SS)	Mean Square	F- Value	Pr. > F	SS Ratio (%)	Res. SD (ng/mL)	
	LOT	9	0.00013	0.0000143	66.2	<.0001	27.8%		
Beryllium	PACK(LOT)	180	0.00017	0.0000010	4.37	<.0001	36.6%		Be < 1 OD (0.003 ng/ml
	Residual	760	0.00017	0.000002			35.6%	0.0005	20 (20 2 (0.000
	LOT	9	1.46	0.162	40.1	<.0001	23.4%		
Titanium	PACK(LOT)	180	1.69	0.009	2.33	<.0001	27.3%		Ti < LOQ (0.625 na/mL)
	Residual	760	3.06	0.004			49.3%	0.064	······································
	LOT	9	1.59	0.177	25.2	<.0001	13.0%		
Manganese	PACK(LOT)	180	5.40	0.030	4.27	<.0001	43.9%		Mn < IOO(0.5 ng/ml)
	Residual	756	5.31	0.007			43.2%	0.084	
	LOT	9	0.002	0.00023	9.27	<.0001	7.3%		
Cobalt	PACK(LOT)	180	0.008	0.00004	1.68	<.0001	26.4%		
	Residual	759	0.019	0.00003			66.3%	0.005	CO < LOD (0.03 ng/mL)
	LOT	9	0.355	0.039	8.59	<.0001	6.7%		
Copper	PACK(LOT)	180	1.47	0.008	1.78	<.0001	27.7%		
	Residual	757	3.47	0.005			65.6%	0.068	Cu < LOD (0.188 ng/mL

Analytical Results – Remaining Metals

Analyte	Source	DF	Sum of Squares (SS)	Mean Square	F- Value	Pr. > F	SS Ratio (%)	Res. SD (ng/mL)
	LOT	9	1.15	0.1276	929	<.0001	41.7%	
Zirconium	PACK(LOT)	180	1.50	0.0084	60.8	<.0001	54.5%	
	Residual	760	0.104	0.0001			3.8%	0.012
	LOT	9	911	101	37.5	<.0001	3.9%	
Molybdenum	PACK(LOT)	178	20596	116	42.8	<.0001	87.5%	
	Residual	752	2031	2.70			8.6%	1.64
	LOT	9	20.6	2.29	716	<.0001	34.1%	
Strontium	PACK(LOT)	180	37.4	0.208	64.9	<.0001	61.9%	
	Residual	760	2.43	0.003			4.0%	0.057
	LOT	9	5.40	0.600	48.8	<.0001	9.8%	
Arsenic	PACK(LOT)	180	40.2	0.223	18.2	<.0001	73.2%	
	Residual	758	9.32	0.012			17.0%	0.111

Zr is quantifiable (LOQ = 0.1)

Mo is quantifiable (LOQ = 0.25)

Sr is occasionally quantifiable (LOQ = 0.25)

As is occasionally quantifiable (LOQ = 0.15)

- Clearly, both quartz pad lot and quartz pad package within lot are significant factors affecting yields for all 20 tested metals
- Zinc and lead show highly significant LOT effects, where the mean for *all* packages within a lot are removed from the majority of other lots and packages
- About half the tested metals show highly significant PACK(LOT) effects (e.g. aluminum, chromium, arsenic, molybdenum)
- For the remaining eight metals (e.g. iron, nickel, silver, copper), while both lot and package are significant factors, the majority of the variance is still unaccounted for in these 2 factors

- Strategies must be adopted to ensure quartz pads from the <u>same package</u> are used in generating samples for both ENDS product aerosols and associated collection (air) blanks
- Such a strategy will eliminate the clear influence of both LOT and PACK(LOT) effects on the levels of background metals in untreated pads prior to their use in sample collection, leaving only within-package sources of variation

Analytical Results – Interpretation of Data

	ahstat
\subset	Labstat

Analyte	Source	DF	Sum of Squares (SS)	Mean Square	F- Value	Pr. > F	SS Ratio (%)	Res. SD (ng/mL)
Iron	LOT	9	319.0	35.4	28.3	<.0001	17.2%	
[ng/mL]	PACK(LOT)	180	582.7	3.24	2.59	<.0001	31.5%	
	Residual	758	948.4	1.25			51.3%	1.12

 Within-package variation for levels of background metals on untreated pads can be estimated by the <u>ANOVA residual mean</u> <u>square</u> (i.e. pooled within-package variance)

Analytical Results – Interpretation of Data

Analyte	Source	DF	Sum of Squares (SS)	Mean Square	F- Value	Pr. > F	SS Ratio (%)	Res. SD (ng/mL)
Iron [ng/mL]	LOT	9	319.0	35.4	28.3	<.0001	17.2%	
	PACK(LOT)	180	582.7	3.24	2.59	<.0001	31.5%	
	Residual	758	948.4	1.25			51.3%	1.12

Within-package variation for levels of background metals on untreated pads can be estimated by the <u>ANOVA residual mean</u> <u>square</u> (i.e. pooled within-package variance)

pooled within-package variance

Analytical Results – Interpretation of Data

Analyte	Source	DF	Sum of Squares (SS)	Mean Square	F- Value	Pr. > F	SS Ratio (%)	Res. SD (ng/mL)
Iron	LOT	9	319.0	35.4	28.3	<.0001	17.2%	
[ng/mL]	PACK(LOT)	180	582.7	3.24	2.59	<.0001	31.5%	
	Residual	758	948.4	1.25			51.3%	1.12

pooled within-package variance

\[
\sqrt{MSRes} = pooled within-package standard deviation
\]

 Within-package variation for levels of background metals on untreated pads can be estimated by the <u>ANOVA residual mean</u> <u>square</u> (i.e. pooled within-package variance)

 Although quartz pad lot and package were both significant, the absolute level of each metal also needs to be considered

 □ Only 6 of 20 metals had ≥50% quantifiable results, with another 2 metals occasionally quantifiable

Metal	Grand Mean (ng/mL)	LOD (ng/mL)	LOQ (ng/mL)	Percent > LOQ	Quantifiable?
Beryllium	0.0003	0.003	0.01	0%	not quantifiable
Aluminum	8.26	0.375	1.25	100%	quantifiable
Titanium	0.076	0.188	0.625	0.6%	not quantifiable
Chromium	1.66	0.15	0.5	100%	quantifiable
Manganese	0.127	0.15	0.5	1.2%	not quantifiable
Iron	3.10	0.15	0.5	100%	quantifiable
Cobalt	0.004	0.03	0.1	0%	not quantifiable
Nickel	0.252	0.3	1	1.1%	not quantifiable
Copper	0.027	0.188	0.625	0.3%	not quantifiable
Zinc	2.38	0.15	0.5	95%	quantifiable
Arsenic	0.091	0.045	0.15	12%	occasionally quantifiable
Selenium	-0.002	0.024	0.08	0%	not quantifiable
Strontium	0.253	0.075	0.25	18%	occasionally quantifiable
Zirconium	0.132	0.03	0.1	85%	mostly quantifiable
Molybdenum	1.41	0.075	0.25	50%	mostly quantifiable
Silver	0.0004	0.023	0.075	0%	not quantifiable
Cadmium	0.001	0.015	0.05	0%	not quantifiable
Tin	-0.056	0.3	1	0%	not quantifiable
Tungsten	0.039	0.03	0.1	1.9%	not quantifiable
Lead	0.066	0.03	0.1	0.1%	not quantifiable

 Within-package 95% confidence intervals for levels of background metals on untreated pads as estimated by the <u>ANOVA residual mean square</u>

within-package variation of background levels on untreated pads could have future applications as a "minimum" threshold for identifying differences between ENDS product aerosols and blanks

- Untreated quartz pads from various lots and packages within lots were analyzed for 20 metals over a 1+ year time frame, resulting in 19,000 data points
- Both LOT and PACK(LOT) were identified as significant factors affecting levels of all 20 tested metals
 - Of the 20 metals, only 6 had reasonably quantifiable levels, with aluminum, iron, zinc, chromium, molybdenum most abundant
- □ Ensure quartz pads are sourced from a single package
- Within-pack variation of quantifiable metals on untreated pads used as a threshold to identify differences between ENDS aerosol and blanks collected on pads from the same package

ENDS aerosol and associated aerosol blanks

- quartz collection pads are sourced from the <u>same</u> package
- ENDS aerosol and blanks are from a single analytical run
- metals analyte is quantifiable in both ENDS aerosol and blank
- metals analyte is quantifiable on the untreated quartz pads
- □ Z-Score for each ENDS aerosol observation?

$$\frac{(X_{ENDS} - \bar{X}_{Blank})}{\sqrt{MSRes}}$$

- Peter Joza
- Angel Rodriguez-Lafuente
- Carmen Donisa
- Hansel Paico-Avilez
- □ Thunder Zheng

THANK YOU !