A blood-based smoking-related gene expression signature using a machine learning approach

Gang (Michael) Liu and G.L. Prasad RAI Services Company 401 N Main St, Winston-Salem, NC 27101

Introduction

- Cigarette smoking is a major risk factor for lung cancer, cardiovascular disease, and respiratory diseases such as chronic obstructive pulmonary disease.
- ➤ Chronic cigarette smoking induces oxidative stress, chronic inflammation, and negatively impacts cellular function and signaling pathways, which may eventually culminate in smoking-related diseases.
- ➤ Comparative analyses of blood transcriptomics (gene expression profiles) between generally healthy smokers (SMK) and non-tobacco consumers (NTC) enable a better understanding of pre-clinical molecular mechanisms affected by smoking that may lead to disease states.

Motivation

- ➤ Gene expression signatures (a small set of genes) offer a cost effective option as biomarkers of potential harm (BoPH) to characterize biological effects due to tobacco product exposure, compared to transcriptome profiling.
- ➤ The gene signature can be measured from relatively easily accessible tissues such as blood that are obtained in a minimally invasive manner.
- ➤ Machine learning methods have been successfully used to build diseaserelated gene signatures (e.g., FDA-cleared MammaPrint test, a 70-gene signature).

Previously Reported Gene Signatures

- ➤ Previous smoking-related gene signature studies¹⁻³ (5-, 11-, and 20-gene signatures) applied a specific classifier and/or feature selector in their analyses.
- ➤ Limited number of independent transcriptomic datasets were used for validation of these gene signatures.

- 1. Arimilli, S. et al., BMC Genomics 2017;18(1):156.
- 2. Martin, F. et al., Human & Experimental Toxicology 2015;34(12):1200.
- 3. Beineke, P. et al., BMC Medical Genomics 2012;5:58.

➤ To develop a robust gene signature with validated clinical performance using all eight publicly available transcriptomics datasets.

Gene Expression Data

		Dataset	# (NTC)	# (SMK)	Sample Type	Microarray Platform	References
Training Dataset		GSE87072	40	40	PBMC	Affymetrix U133 Plus 2.0	(Arimilli, et al., 2017)
	—	EMTAB-5279	29	30	Whole Blood	Affymetrix U133 Plus 2.0	(Martin, et al., 2015)
		EMTAB-5278	114	60	Whole Blood	Affymetrix U133 Plus 2.0	(Martin, et al., 2015)
Independent Validation Datasets		GSE20189	21	27	Whole Blood	Affymetrix U133 Plus 2.0	(Rotunno, et al., 2011)
		GSE23323	22	22	Whole Blood	Agilent	(Jennen, et al., 2015)
		GSE47415	24	24	Whole Blood	Agilent	(Paul and Amundson, 2014)
		GSE15289	211	74	Whole Blood	ABI Human Genome Survey Microarray Version 2	(Dumeaux, et al., 2010)
		GSE42057	0	13	PBMC	Affymetrix U133 Plus 2.0	(Bahr, et al., 2013)

RAI SERVICES COMPANY

- Arimilli, S. et al., BMC Genomics 2017;18(1):156.
- Martin, F. et al., Human & Experimental Toxicology 2015;34(12).
- Bahr, T.M. et al., American Journal of Respiratory Cell and Molecular Biology 2013;49(2).
- 4. Rotunno, M. et al., Cancer Prevention Research 2011;4(10).
- 5. Jennen, D.G. et al., Chemical Research in Toxicology 2015;28(10).
- Paul, S. and Amundson, S.A, Journal of Carcinogenesis & Mutagenesis 2014;5.
- 7. Dumeaux, V. et al., PLoS Genetics 2010:6(3).

NTC: non-tobacco consumers

SMK: smokers

> Eight blood-based smoking-related microarray datasets were used

6

Machine Learning Algorithms

Classification

Feature (gene) Selection

❖ SVM: support vector machine

❖ RF: random forest

LDA: linear discriminant analysis

❖ NB: naïve Bayes

❖ RFE: recursive feature elimination

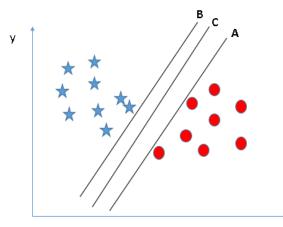
CFS: correlation feature selection

❖ IGR: information gain ratio

❖ CS: Chi-squared method

- > Classification models are used to predict smoking status.
- > Feature selection methods are implemented to select a subset of genes from eight thousand genes contained within microarray data.

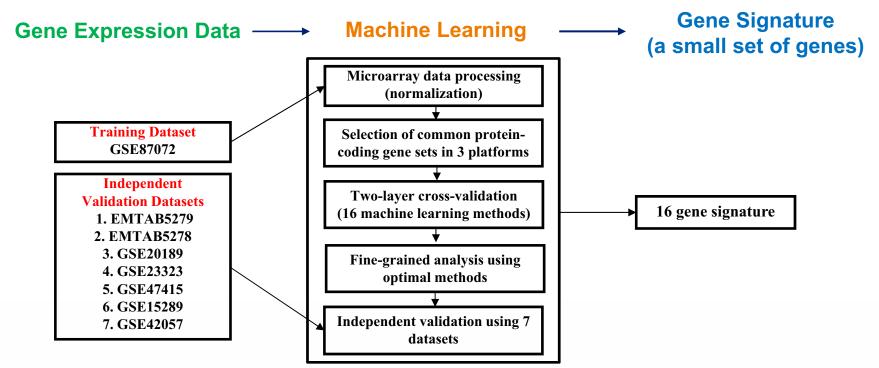
➤ SVM (support vector machine) defines an optimal hyperplane to separate the samples of different classes with maximization of separating margin.



- ✓ Hyperplane: A, B and C to separate two classes (blue stars and red circles)
- ✓ Hyperplane C has maximum separating margin
- ➤ RFE (recursive feature elimination) iteratively fits the model and discards the features ranked as least important to classification performance until a specified number of features are met.

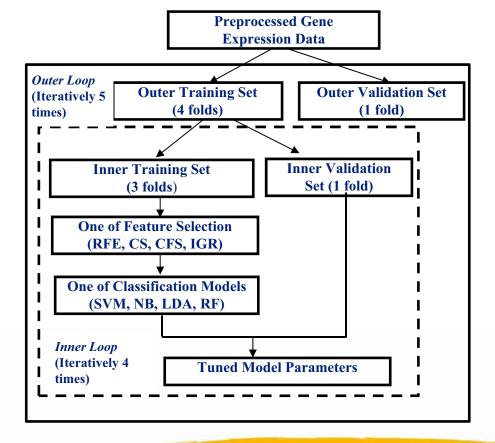
TSRC2019(73) - Document not peer-reviewed

Machine Learning Workflow



A machine learning workflow was developed to search for optimal algorithm

Two-layer Cross Validation



Two-layer (nested) cross validation method minimizes the bias introduced through the overuse of the training data, and provides a better approach to select the best-performing model.

Model Performance: Accuracy

	Predicted Positive	Predicted Negative
Actual P	True Positive (TP)	False Negative (FN)
Actual N	False Positive (FP)	True Negative (TN)

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

> Accuracy is the ratio of total number of correct predictions to the total number of samples

Model Performance: AUCROC

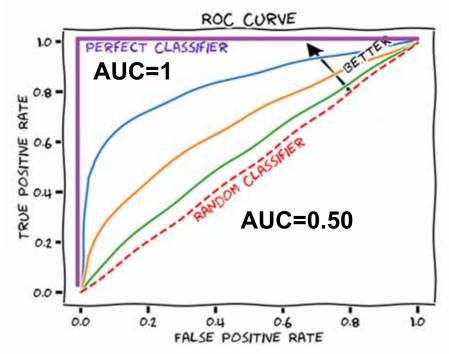
	Predicted Positive	Predicted Negative
Actual P	True Positive (TP)	False Negative (FN)
Actual N	False Positive (FP)	True Negative (TN)

True Positive Rate =
$$\frac{TP}{TP+FN}$$

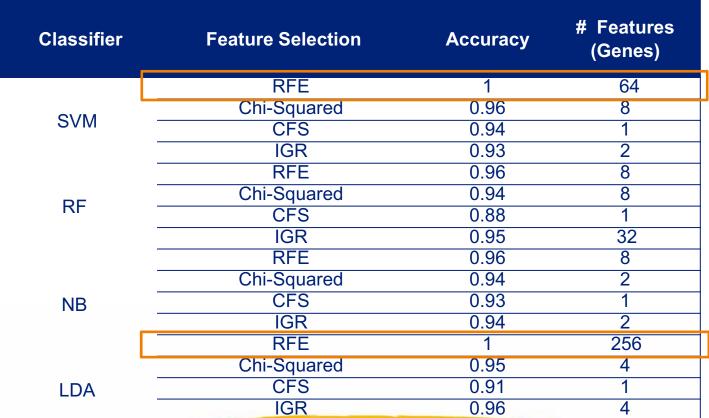
False Positive Rate =
$$1 - \frac{TN}{FP + TN}$$

➤ AUCROC (area under curve of ROC) provides another metric of how the model performs

Receiver Operating Characteristics



Two-layer Cross Validation Results



- ➤ SVM+RFE and LDA+RFE perform better than the others
- > SVM+RFE identifies fewer genes in the signature

SVM: support vector machine

RF: random forest

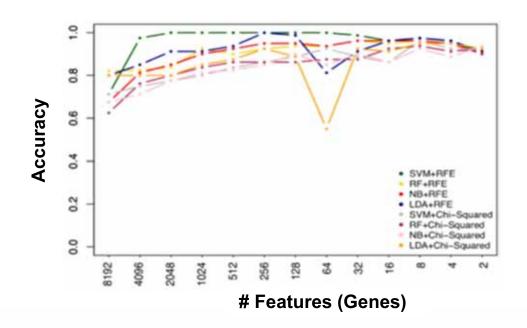
LDA: linear discriminant analysis

NB: naïve Bayes

RFE: recursive feature elimination

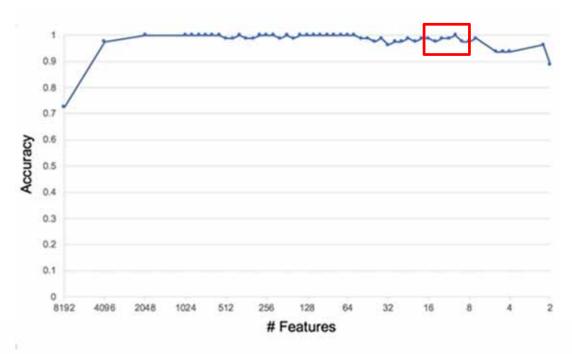
CFS: correlation feature selection IGR: information gain ratio CS: Chi-squared method

Two-layer Cross Validation Results



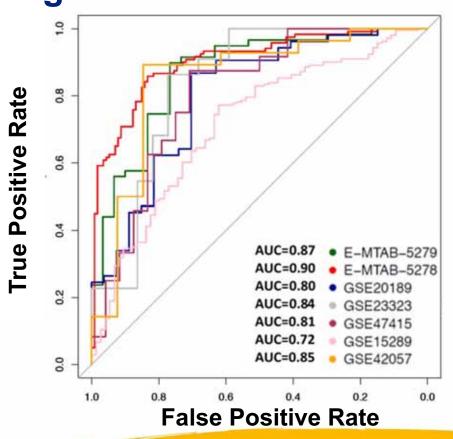
- ➤ Model performance changes with the number of features
- > SVM+RFE outperforms the others

Fine-grained Analysis (SVM+RFE)



- > The accuracy of 8-18 gene signatures were greater than 0.95
- ➤ 16 gene signature performs best in independent validation among 8-18 gene signatures

Independent Validation of 16 Gene Signature



➤ All AUC of independent validation datasets are greater than 0.80 except GSE15289 (AUC=0.72)

Independent Validation of 16 Gene Signature

Dataset	Actual	Predicted SMK	Predicted NTC	Accuracy
	29 NTC	3	26	
E-MTAB-5279	30 SMK	23	7	0.81
	60 NTC	11	49	
E-MTAB-5278	114 SMK	98	16	0.82
GSE20189	21 NTC	0	21	
GSE20169	27 SMK	15	12	0.79
GSE23323	22 NTC	3	19	
GSE23323	22 SMK	17	5	0.82
GSE47415	24 NTC	8	16	
GSE47415	24 SMK	18	6	0.71
00545300	211 NTC	41	170	
GSE15289	74 SMK	38	36	0.73
GSE42057	13 SMK	11	2	0.73

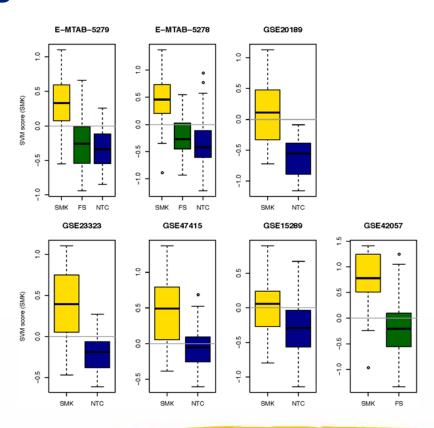
> Accuracy of independent validation datasets are all greater than 0.70

Independent Validation of 16 Gene Signature using Former Smokers' Data_{RAI SERVICE}

Dataset	Former Smokers (as proxy to NTC)	True rate
E-MTAB-5278	15	0.75
E-MTAB-5279	7	0.77
GSE42057	9	0.68

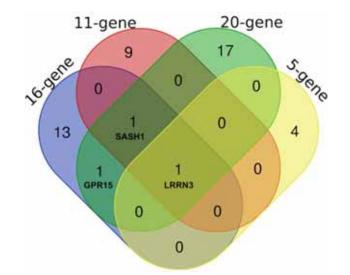
All true rates are >0.65

Independent Validation of 16 Gene Signature



- ➤ 16 gene signature scores (SVM scores) can distinguish SMK from NTC in all 8 datasets
- ➤ All p values comparing gene signature scores of SMK with NTC are less than 0.05
- SVM scores of FS (former smokers) are similar to NTC

16 Gene Signature



Gene Signatures	Gene Symbols		
16- gene	LRRN3, SASH1, GPR15, STAB1, NDST2, COCH, PHACTR1, MKRN3, EPB41L3, PTGDR, PAFAH2, CDK8, TPSG1, TBX21, GZMM, NCBP1		
11- gene	LRRN3, SASH1, PALLD, RGL1, TNFRSF17, CDKN1C, JCHAIN, RRM2, ID3, SERPING1, FUCA1		
20- gene	LRRN3, SASH1, GPR15, GPM6B, RIPK2, ASGR2, PTGDS, ADGRG1, ERAP1, PID1, MS4A4A, CLEC1B, CENPK, ITGB8, S1PR3, TOB1, PCGF3, FCRL5, AP5M1, HLA-DPB2		
5-gene	LRRN3, MUC1, GOPC, LEF1, CLDND1		

➤ LRRN3 and SASH1 were shared among 16, 11, and 20 gene signatures.

LRRN3: leucine rich repeat neuronal 3 SASH1: SAM and SH3 domain containing 1 GPR15: G-protein coupled receptor 15

TSRC2019(73) - Document not peer-reviewed

Cancer-related Genes in the Signature

Gene name	Disease Type	Full Name and Biological Functions
GZMM		Granzyme M, a serine protease playing important role in innate immunity
LRRN3		Leucine-rich repeat neuronal protein 3, a membrane protein involved in cognitive and immune functions
SASH1		SAM and SH3 Domain Containing 1, a scaffold protein involved in immune signaling
PTGDR	Cancer	Prostaglandin D2 receptor, a membrane receptor protein involved in inflammation signaling
EPB41L3		Erythrocyte member protein band 4.1-like 3, a membrane protein with tumor suppressive properties
TBX21		T-box transcription factor 21, a transcription factor regulating immune function
CDK8		Cyclin-dependent protein kinase 8, a colorectal cancer oncogene and putative tumor suppressor gene in other cancers
STAB1		Stabilin-1, a transmembrane receptor protein with a role in regulating angiogenesis

Lung and Cardiovascular Diseases-related Genes in the Signature RAI SERVICES COMPANY

Gene name	Disease Type	Full Name and Biological Functions
TPSG1		Tryptase Gamma 1, a trypsin-like serine protease implicated as mediators in the pathogenesis of inflammatory disorders
PAFAH2	Lung Disease	Platelet-activating factor acetylhydrolase isoform 2, an intracellular enzyme involved in platelet homeostasis
NCBP1	Cardiovascular	Nuclear cap binding protein subunit 1, a component of the nuclear cap- binding complex involved in various processes including translation regulation and pre-mRNA splicing
PHACTR1	Disease	Phosphatase and actin regulator 1, an intracellular protein associated with coronary artery disease
MKRN3		Makorin Ring Finger Protein 3, a ubiquitin ligase associated with coronary artery disease and cancer risk

- ➤ An optimal machine learning algorithm was identified for deriving a gene signature from blood-based gene expression data sets.
- ➤ A 16-gene signature was developed to characterize biological responses to chronic cigarette smoking.
- ➤ It demonstrates consistent and robust performance across seven independent validation datasets.
- ➤ This gene signature can serve as a BoPH to differentiate biological responses in consumers of different types of tobacco products.

Acknowledgements

- AccuraScience
 - Justin Li
- RAIS
 - Wei Chao

Thank you! Questions?