

## Variation of Sugar Levels in Tobaccos Upon Heating

Serban C. Moldoveanu, Karen Kilby

#### **Background**

- During tobacco processing, preparation of expanded tobacco, as well as when tobacco is used in "heat not burn" type cigarettes, the tobacco is exposed to different degrees of heat.
- Sugars, and in particular glucose, fructose and sucrose are present at high level in flue-cured and Oriental tobaccos (up to 15-16% reducing sugars and about 7% sucrose in some flue-cured tobaccos).
- Several tobacco components, including sugars start decomposing at temperatures above 150 °C.
- Sugars decomposition has significant impact on the sensory properties of tobaccos.
- Some undesirable compounds such as acetaldehyde are generated during sugar thermal decomposition.
- The present study evaluated changes in the overall chemical composition of six common tobaccos when the tobacco was subject to heating up to 250 °C, with particular focus on the variation of the levels of fructose, glucose and sucrose.
- The tobacco types evaluated in the study were flue-cured, burley, and Oriental, as typically used in cigarette production.

#### Heating of the tobaccos

- The tobacco leaf was ground in a coffee grinder to a fine powder with particles of about 0.2 mm diameter.
- The heating of the tobacco samples was performed in sealed glass tubes.
- Two types of Pyrex glass tube were used for containing the tobacco, one type had 8 mm i.d. and a length of 15 cm and the other had 6 mm i.d. and a length of 30 cm. Both tubes had 1 mm wall thickness.
- About 600 mg tobacco were weighed in each tube which was sealed at one end and
  was subject to mild vacuum before being sealed at the second end. The purpose of
  applying vacuum was to prevent the tubes from breaking when exposed to heat due to
  the expansion of the gases from the tube.
- The heating was performed in a Thermoline Furnace 62700 (Thermo Fisher, Waltham, MA, USA).
- Four different temperatures were used: 100 °C, 150 °C, 200 °C, and 250 °C. Two times intervals were selected for heating: 2 min and 5 min.
- Only the time and the temperature of heating of the glass tube containing the tobacco were known, and not the actual temperature of the tobacco. Delays in the temperature reached by the tobacco occurred during heating but also during cooling of the tubes.
- The sugar levels in the initial tobacco and in the tobacco removed from the glass tubes after heating were measured.

TSRC2019(73) - Document not peer-reviewed

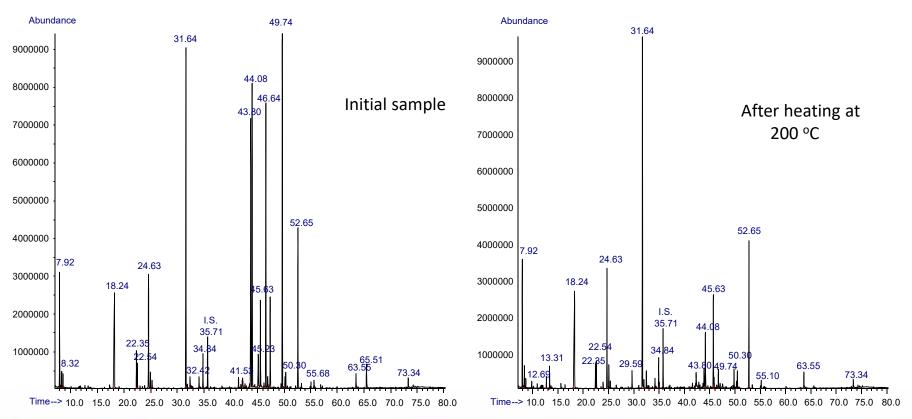
### Tubes containing burley tobacco before heating



- The tobacco composition was evaluated using a screening analytical technique that consisted of direct silylation of tobacco followed by GC/MS analysis [1].
- This technique allows the identification of up to 58 compounds, including acids such as lactic, maleic, succinic, butendioic, malic, trihydroxybutanoic, gluconic, citric, caffeic, linoleic, stearic, chlorogenic, etc., sugars and sugar alcohols such as mannose, altrose, glucose, fructose, sucrose, maltotriose, xylitol, ribitol, etc., and also compounds such as inositol, propylene glycol, glycerin, phosphate, nicotine, and deoxyfructosazines.
- Polymeric tobacco components such as cellulose, hemicellulose, pectin, proteins, starch, as well as most of amino acids, and inorganic components (except for the phosphate) are not detected by this screening procedure.
- The results for individual compounds were expressed as area counts of the chromatographic peak. This type of presentation of results does not provide the quantitative level of different compounds in the tobacco sample, but still allows a quantitative comparison indicating which compound is at a higher or a lower level in the compared samples.

[Alford, E.D. and J.H. Lauterbach: 41st Tobacco Chemist's Research Conference, Program, Vol. 41, No. 56, 1987, p. 41.]

#### Details on the GC/MS screening technique


- 50 mg of each sample of tobacco was weighed (with 0.1 mg precision) in 2 mL
   GC vials and directly silylated without using a preliminary extraction.
- For silylation, 400  $\mu$ L of DMF that contained an internal standard was added first to each vial containing the sample, followed by 800  $\mu$ L BSTFA with 1% TMCS.
- The vials were kept at 78 °C (in a heating block) for 30 min, and subsequently allowed to cool at room temperature for another 30 min.
- After cooling the solution from each vial was filtered through 0.45  $\mu m$  PVDF filters and analyzed by GC/MS.
- The GC/MS separation was performed on a DB-5 MS column, 30 m x 0.25 mm i.d. with 0.25  $\mu$ m film with He as a carrier gas.
- The temperature gradient of the GC oven was varied between 50 °C to 300 °C in an interval of 85.5 min.
- The mass spectrometer was acquiring in the mass range 33 to 550 amu.

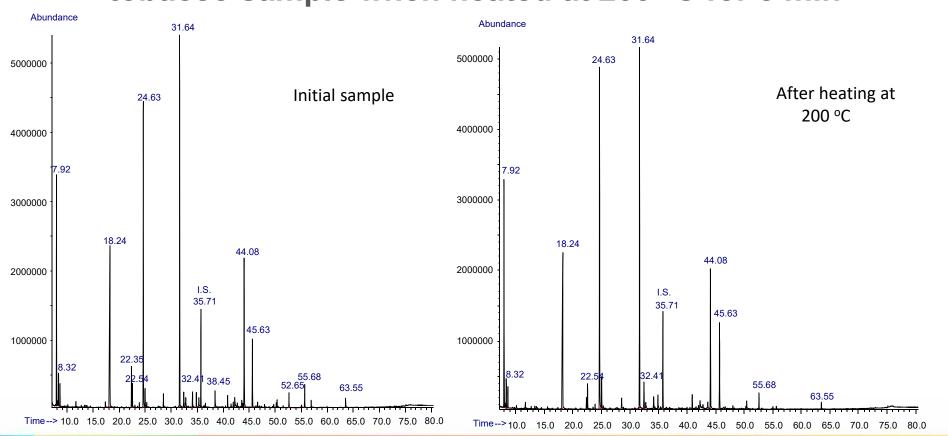
| Name   | Tobacco description    | Temperatures °C    | Time of exposure |
|--------|------------------------|--------------------|------------------|
| FC-Lo  | Lower stalk flue-cured | 100, 150, 200, 250 | 2 min, 5 min     |
| FC-Up  | Upper stalk flue-cured | u                  | "                |
| Bu-Lo  | Lower stalk burley     | u                  | 66               |
| Bu-Up  | Upper stalk burley     | u                  | 66               |
| Or (1) | Oriental               | í,                 | 66               |
| Or (2) | Oriental               | 66                 | "                |

| Name   | Reducing sugars % | Total sugars % | Alkaloids % |
|--------|-------------------|----------------|-------------|
| FC-Lo  | 10.3              | 11.0           | 2.07        |
| FC-Up  | 8.86              | 9.29           | 2.85        |
| Bu-Lo  | BQL*              | BQL            | 2.51        |
| Bu-Up  | BQL               | BQL            | 3.46        |
| Or (1) | 6.54              | 6.99           | 1.13        |
| Or (2) | 10.3              | 11.3           | 1.02        |

<sup>\*</sup> BQL indicates below quantitation limit.

## Changes in the chromatographic profile of a flue-cured tobacco sample when heated at 200 °C for 5 min




## Changes in the chemical composition of a flue-cured tobacco sample when heated at 200 °C for 5 min

|    |                             | Ret. time | Ratio       | Type of      |
|----|-----------------------------|-----------|-------------|--------------|
|    | Compound                    | min       | 200/initial | change       |
| 1  | Propylene glycol            | 10.12     | 1.01        | No change    |
| 2  | Lactic acid                 | 12.69     | 3.89        | Up           |
| 3  | Glycolic acid               | 13.31     | 8.90        | Up           |
| 4  | Pyridinol                   | 15.25     | -           | New          |
| 5  | Propanoic acid              | 16.34     | 0.98        | No change    |
| 6  | Phosphate                   | 22.36     | 0.99        | No change    |
| 7  | Glycerin                    | 22.54     | 1.10        | No change    |
| 8  | (E)-2-Butenedioic           | 23.49     | 0.94        | No change    |
| 9  | Nicotine                    | 24.63     | 0.99        | No change    |
| 10 | Glyceric acid               | 24.99     | 1.48        | Up           |
| 11 | (Z)-2-Butenedioic           | 25.30     | 0.97        | No change    |
| 12 | 2-Hexenedioic acid          | 29.56     | -           | New          |
| 13 | Malic acid                  | 31.65     | 1.04        | No change    |
| 14 | Pyroglutamic acid           | 32.42     | 1.59        | Up           |
| 15 | Trihydroxybutanoic acid (1) | 34.12     | 0.90        | Small change |
| 16 | Trihydroxybutanoic acid (2) | 34.85     | 0.90        | Small change |
| 17 | Levoglucosan                | 41.52     | 0.45        | Down         |
| 18 | Arabinose                   | 42.30     | 0.69        | Down         |
| 19 | Xylose                      | 43.34     | 0.97        | No change    |
| 20 | Fructose (1)                | 43.79     | 0.06        | Down         |
| 21 | Fructose (2)                | 44.08     | 0.07        | Down         |
| 22 | Citric acid                 | 44.04     | 1.40        | Up           |
| 23 | Neophytadiene               | 43.57     | 1.06        | No change    |

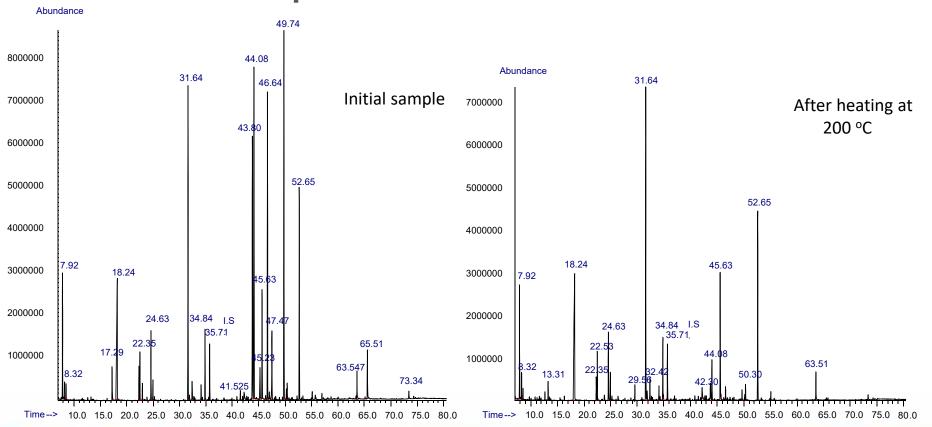
## Changes in the chemical composition of a flue-cured tobacco sample when heated at 200 °C for 5 min (cont.)

|    |                      | Ret. time | Ratio       | Type of      |
|----|----------------------|-----------|-------------|--------------|
|    | Compound             | min       | 200/initial | change       |
| 24 | Quinic acid          | 45.63     | 1.17        | Small change |
| 25 | Sorbose              | 46.36     | 0.60        | Down         |
| 26 | Glucose (1)          | 46.63     | 0.05        | Down         |
| 27 | Sugar acid           | 47.47     | 0.05        | Down         |
| 28 | Glucosamine          | 46.63     | 0.62        | Down         |
| 29 | Mannitol             | 49.04     | 0.58        | Down         |
| 30 | Glucose (2)          | 49.73     | 0.05        | Down         |
| 31 | Gluconic acid        | 50.23     | 0.68        | Down         |
| 32 | Hexadecanoic acid    | 50.38     | 1.08        | No change    |
| 33 | Myoinositol          | 52.65     | 0.94        | No change    |
| 34 | Caffeic acid         | 53.33     | 0.98        | No change    |
| 35 | Linoleic acid        | 54.94     | 1.07        | No change    |
| 36 | Linolenic acid       | 55.11     | 1.04        | No change    |
| 37 | Galactopyranose      | 57.24     | 0.06        | Down         |
| 38 | Glucuronic acid      | 63.55     | 1.15        | Small change |
| 39 | Disaccharide         | 65.51     | 0.10        | Down         |
| 40 | Sucrose              | 65.52     | 0.10        | Down         |
| 41 | 2,5-Deoxyfructosaz   | 65.62     | 1.02        | No change    |
| 42 | 2,6-Deaoxyfructosa   | 65.80     | 0.95        | No change    |
| 43 | Chlorogenic acid (1) | 73.35     | 0.97        | No change    |
| 44 | Tocoferol            | 72.95     | 1.02        | No change    |
| 45 | Chlorogenic acid (2) | 74.59     | 1.00        | No change    |
| 46 | Stigmasterol         | 75.15     | 0.99        | No change    |

## Changes in the chromatographic profile of a burley tobacco sample when heated at 200 °C for 5 min



## TSRC2019(73) - Document not peer-reviewed


## Changes in the chemical composition of a burley tobacco sample when heated at 200 °C for 5 min

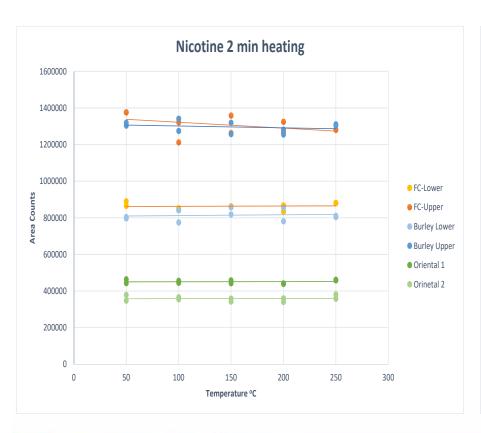
|    | Compound                    | Ret. time | Ratio       | Type of      |
|----|-----------------------------|-----------|-------------|--------------|
|    | Compound                    | min       | 200/initial | change       |
| 1  | Propylene glycol            | 10.12     | 0.99        | No change    |
| 2  | Lactic acid                 | 12.69     | 1.49        | Up           |
| 3  | Glycolic acid               | 13.31     | 1.18        | Small change |
| 4  | Alanine                     | 13.59     | 1.04        | No change    |
| 5  | Phosphate                   | 22.35     | 0.99        | No change    |
| 6  | Glycerin                    | 22.54     | 1.01        | No change    |
| 7  | (E)-2-Butenedioic           | 23.49     | 1.08        | No change    |
| 8  | Nicotine                    | 24.63     | 1.04        | No change    |
| 9  | Glyceric acid               | 0.00      | 1.61        | Up           |
| 10 | (Z)-2-Butenedioic           | 25.30     | 0.61        | Down         |
| 11 | Malic acid                  | 31.63     | 0.93        | No change    |
| 12 | Pyroglutamic acid           | 32.41     | 1.74        | Up           |
| 13 | Trihydroxybutanoic acid (1) | 34.12     | 0.72        | Down         |
| 14 | Trihydroxybutanoic acid (2) | 34.85     | 0.92        | No change    |
| 15 | Asparagine                  | 38.45     | 7.26        | Up           |
| 16 | Levoglucosan                | 41.52     | 0.59        | Down         |
| 17 | Arabinose                   | 42.30     | 0.54        | Down         |
| 18 | Fructose (1)                | 43.79     | 0.07        | Down         |

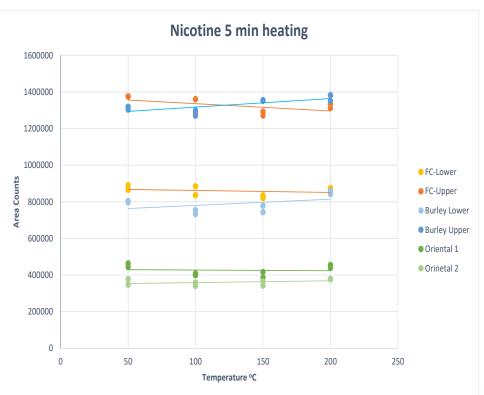
## Changes in the chemical composition of a burley tobacco sample when heated at 200 °C for 5 min (cont.)

|    | Compound             | Ret. time | Ratio       | Type of   |
|----|----------------------|-----------|-------------|-----------|
|    | Compound             | min       | 200/initial | change    |
| 19 | Citric acid          | 44.04     | 0.92        | No change |
| 20 | Neophytadiene        | 43.57     | 0.97        | No change |
| 21 | Quinic acid          | 45.63     | 1.24        | Up        |
| 22 | Glucose (1)          | 46.63     | 0.18        | Down      |
| 23 | Sugar acid           | 47.47     | 0.01        | Down      |
| 24 | Glucosamine          | 46.61     | 0.04        | Down      |
| 25 | Galacturonic acid    | 48.88     | 0.05        | Down      |
| 26 | Glucose (2)          | 49.73     | 0.15        | Down      |
| 27 | Gluconic acid        | 50.23     | 0.58        | Down      |
| 28 | Hexadecanoic acid    | 50.38     | 0.99        | No change |
| 29 | Myoinositol          | 52.65     | 1.08        | No change |
| 30 | Caffeic acid         | 0.00      | 0.98        | No change |
| 31 | Linoleic acid        | 54.93     | 1.02        | No change |
| 32 | Sugar acid           | 55.68     | 9.54        | Up        |
| 33 | Galactopyranose      | 57.24     | 0.04        | Down      |
| 34 | Glucuronic acid      | 63.55     | 0.71        | Down      |
| 35 | Chlorogenic acid (1) | 73.34     | 1.08        | No change |
| 36 | Tocoferol            | 72.94     | 1.05        | No change |
| 37 | Stigmasterol         | 75.15     | 1.00        | No change |

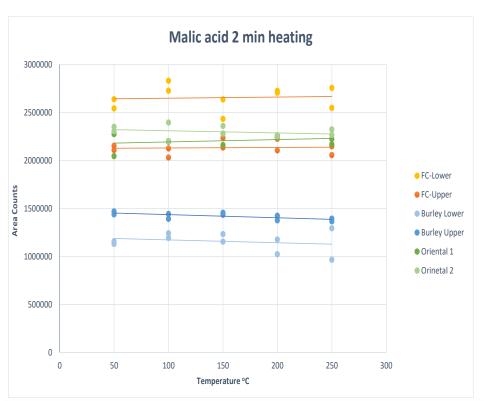
## Changes in the chromatographic profile of a Oriental tobacco sample when heated at 200 °C for 5 min

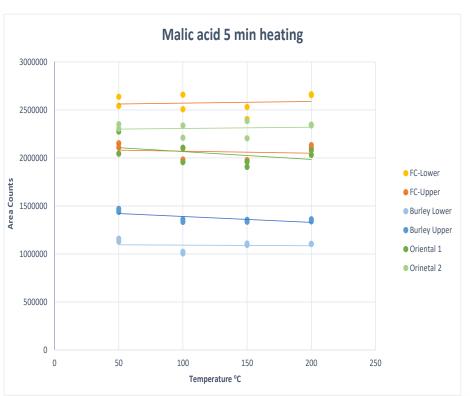



## Changes in the chemical composition of a Oriental tobacco sample when heated at 200 °C for 5 min


|    | Compound                    | Ret. time | Ratio       | Type of      |
|----|-----------------------------|-----------|-------------|--------------|
|    | Compound                    | min       | 200/initial | change       |
| 1  | Propylene glycol            | 10.11     | 1.04        | No change    |
| 2  | Lactic acid                 | 12.69     | 2.92        | Up           |
| 3  | Glycolic acid               | 13.31     | 5.10        | Up           |
| 4  | Alanine                     | 13.58     | 3.14        | Up           |
| 5  | Proline                     | 17.29     | 0.06        | Down         |
| 6  | Phosphate                   | 22.35     | 1.01        | No change    |
| 7  | Glycerin                    | 22.54     | 1.01        | No change    |
| 8  | (E)-2-Butenedioic           | 23.49     | 1.23        | Up           |
| 9  | Nicotine                    | 24.63     | 0.99        | No change    |
| 10 | Glyceric acid               | 24.99     | 1.37        | Up           |
| 11 | (Z)-2-Butenedioic           | 25.30     | 1.16        | Up           |
| 12 | 2-Hexenedioic acid          | 29.56     | -           | New          |
| 13 | Malic acid                  | 31.63     | 0.99        | No change    |
| 14 | Pyroglutamic acid           | 32.41     | 1.19        | Up           |
| 15 | Trihydroxybutanoic acid (1) | 34.12     | 0.92        | No change    |
| 16 | Trihydroxybutanoic acid (2) | 34.85     | 0.88        | Small change |
| 17 | Levoglucosan                | 41.53     | 0.43        | Down         |
| 18 | Arabinose                   | 42.30     | 0.89        | Down         |
| 19 | Xylose                      | 43.36     | 1.07        | No change    |
| 20 | Fructose (1)                | 43.80     | 0.05        | Down         |
| 21 | Fructose (2)                | 44.10     | 0.06        | Down         |
| 22 | Citric acid                 | 44.04     | 0.83        | Down         |
| 23 | Neophytadiene               | 43.57     | 1.00        | No change    |
| 24 | Galactofuranose             | 45.23     | 0.00        | Down         |
| 25 | Quinic acid                 | 45.63     | 1.15        | Small change |

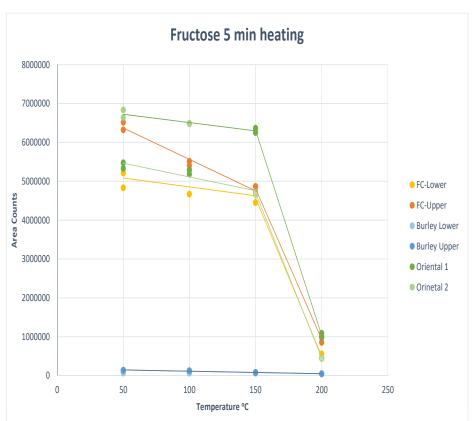
## Changes in the chemical composition of a Oriental tobacco sample when heated at 200 °C for 5 min (cont.)


|    |                      | Ret. time | Ratio       | Type of   |
|----|----------------------|-----------|-------------|-----------|
|    | Compound             | min       | 200/initial | change    |
| 26 | Sorbose              | 46.36     | 0.76        | Down      |
| 27 | Glucose (1)          | 46.64     | 0.03        | Down      |
| 28 | Sugar acid           | 47.47     | 0.04        | Down      |
| 29 | Glucosamine          | 46.60     | 0.20        | Down      |
| 30 | Mannitol             | 49.04     | 0.65        | Down      |
| 31 | Sorbitol             | 47.47     | 0.00        | Down      |
| 32 | Galacturonic acid    | 48.89     | 0.58        | Down      |
| 33 | Glucose (2)          | 49.74     | 0.02        | Down      |
| 34 | Gluconic acid        | 50.23     | 0.56        | Down      |
| 35 | Hexadecanoic acid    | 50.38     | 0.96        | No change |
| 36 | Myoinositol          | 52.65     | 0.96        | No change |
| 37 | Caffeic acid         | 53.32     | 0.95        | No change |
| 38 | Linoleic acid        | 54.93     | 1.04        | No change |
| 39 | Linolenic acid       | 55.11     | 1.08        | No change |
| 40 | Galactopyranose      | 57.24     | 0.00        | Down      |
| 41 | Glucuronic acid      | 63.55     | 0.98        | No change |
| 42 | Disaccharide         | 65.51     | 0.04        | Down      |
| 43 | Phytosterol (1)      | 65.08     | 0.05        | Down      |
| 44 | Sucrose              | 65.51     | 0.04        | Down      |
| 45 | 2,5-Deoxyfructosaz   | 65.51     | 0.93        | No change |
| 46 | 2,6-Deaoxyfructosa   | 65.80     | 1.06        | No change |
| 47 | Maltose              | 66.90     | 0.00        | Down      |
| 48 | Chlorogenic acid (1) | 73.34     | 0.58        | Down      |
| 49 | Tocoferol            | 72.94     | 1.06        | No change |
| 50 | Chlorogenic acid (2) | 74.59     | 0.80        | Down      |

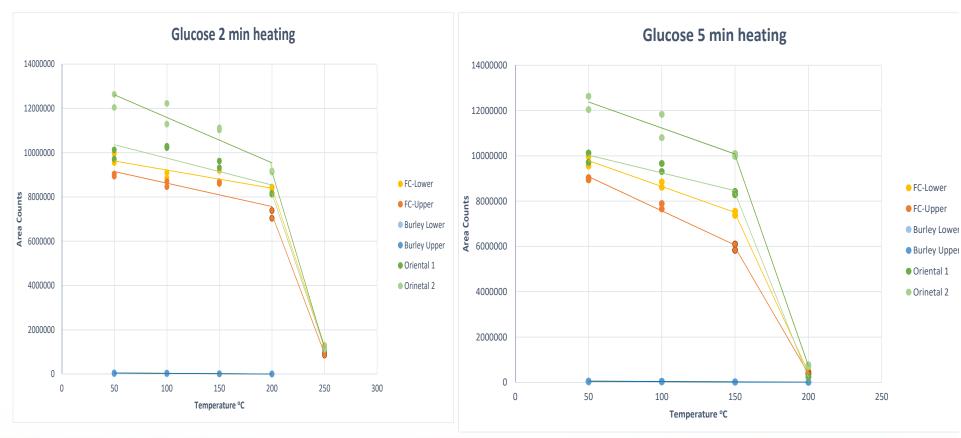

#### Changes in nicotine level in heated tobaccos



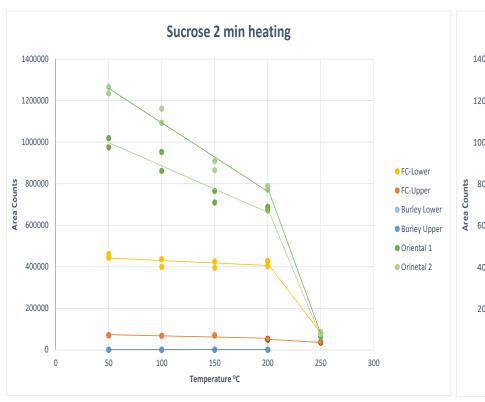


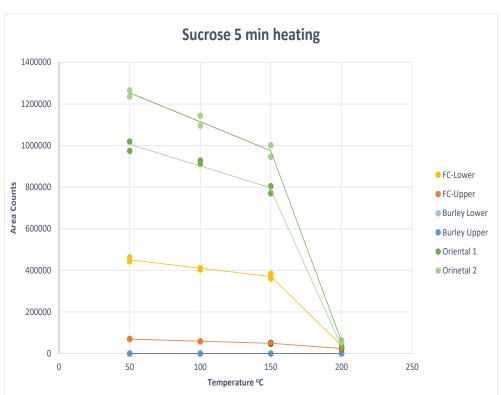

#### Changes in malic acid level in heated tobaccos



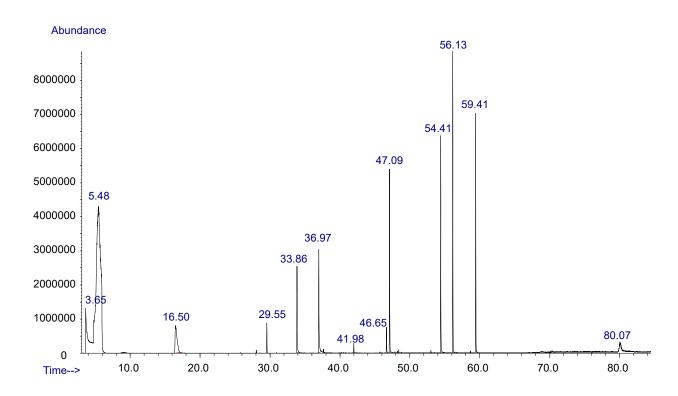



### Changes in fructose level in heated tobaccos




#### Changes in glucose level in heated tobaccos




#### Changes in sucrose level in heated tobaccos

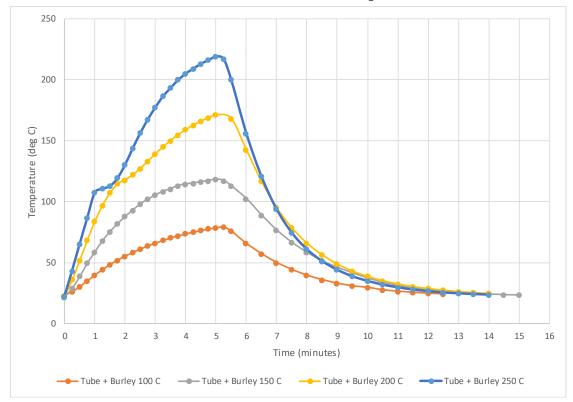




## Pyrogram of pure glucose, at 300 °C for 40s



# TSRC2019(73) - Document not peer-reviewed


#### Peak identification for the pyrogram of glucose

|    | Compound                                            | Ret.<br>time | Area % |
|----|-----------------------------------------------------|--------------|--------|
| 1  | Air                                                 | 3.65         | 4.47   |
| 2  | Water                                               | 5.49         | 54.54  |
| 3  | Hydroxyacetone                                      | 16.50        | 5.01   |
| 4  | Furfural                                            | 29.55        | 0.86   |
| 5  | Glyceraldehyde                                      | 33.86        | 2.74   |
| 6  | Dihydroxyacetone                                    | 36.97        | 3.75   |
| 7  | 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- | 41.98        | 0.25   |
| 8  | Glycerol                                            | 46.65        | 0.80   |
| 9  | 5-Hydroxymethylfurfural                             | 47.10        | 4.87   |
| 10 | 2-Ethyl-2-(hydroxymethyl)-1,3-propanediol           | 54.41        | 5.98   |
| 11 | 1,6-AnhydrobetaD-glucopyranose                      | 56.13        | 8.49   |
| 12 | 1,6-AnhydrobetaD-glucofuranose                      | 59.41        | 6.86   |
| 13 | Hydrocarbon (from the pyrolyzer)                    | 80.07        | 1.39   |

## Conclusions

- Six common tobaccos including two flue-cured, two burleys and two Orientals were heated in sealed glass containers at temperatures of 100, 150, 200 and 250 °C for two min or for five min.
- Some compounds such as nicotine or malic acid are stable when tobacco is heated at these moderate temperatures.
- All sugars start decomposing at temperatures as low as 150 °C and depending on the heating time their level is significantly reduces when heating at 250 °C for two minutes or at 200 °C for five minutes.
- The decomposition products of sugars include water, several anhydrosugars, short chain organic acids such as lactic acid and glycolic acid, furfural, hydroxymethylfurfural, hydroxyacetone, dihydroxyacetone.

#### Variation of tobacco temperature in time



Results from a study by F. K. St. Charles and S. C. Moldoveanu