

Global Laboratory Services

USP ELEMENTAL IMPURITIES: LIMIT TEST FOR METALS IN NICOTINE BY ICP- MS

Hamid Lotfi, PhD
September 17, 2019

Outline

, Background on USP Nicotine USP Nicotine Monograph

- Method Development

Sample preparation
Isotopes and internal standards

- Spectral interferences
- Method Validation
- Linearity
- Recoveries
- Selectivity
- Drift values

USP Nicotine

, Designed for pharmaceutical products.

- Limited guidance and regulation for producing e-liquid.

The USP monograph is considered the gold standard.

- Majority of manufacturers adhere to this testing to ensure quality and consistency of product.
, Good product stewardship.

USP Nicotine Monograph

, Consists of several tests
Identification (UV absorption and FTIR)
Assay (acid/ base titration)

- Specific Rotation (Polarimetry)
- Water Determination (Karl Fischer titration)
- Organic Impurities (HPLC with UV)

Elemental Impurities or Metals (ICP- MS)

- Residual Solvents (headspace GC- FID) (not a USP nicotine test)

Limit Tests

- Tests that are being used to identify / control impurities

Quantitative or semi quantitative tests designed to identify and control small quantities or impurities which are likely to be present in the substances.

- Pass or Fail tests
- The impurity level in sample solution should not be greater than standard solution.
Example: the concentration of lead in USP grade nicotine must be $0.5 \mu \mathrm{~g} / \mathrm{g}$ or lower.

PASS

FAIL

J values - Maximum Concentration

- Metals are placed into three classes, based on toxicity and likelihood of occurrence in product
- Metal toxicity is related to the extent of exposure (three routes of administration: oral, parenteral, inhalational)
- Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance

Permitted inhalation concentrations (J) of elemental impurities

Element	Symbol	Class	Inhalation Conc. (Hg/g)
Cadmium	Cd	1	0.2
Lead	Pb	1	0.5
Arsenic	As	1	0.2
Mercury	Hg	1	0.1
Cobalt	Co	2 A	0.3
Vanadium	V	2 A	0.1
Nickel	Ni	2 A	0.5
Lithium	Li	3	2.5
Antimony	Sb	3	2
Barium	Ba	3	30
Molybdenum	Mo	3	1
Copper	Cu	3	3
Tin	Sn	3	6
Chromium	Cr	3	0.3

USP <232> ELEMENTAL IMPURITIES-LIMITS
USP <233> ELEMENTAL IMPURITIES—PROCEDURE

Method Development

- Sample Preparation

Matrix matched standards

- Dilution in nitric acid
, Instrumental Analysis (ICP- MS)
- Selection of analyte isotopes
- Elimination of interferences
- Kinetic Energy Discrimination (KED)
- Dynamic Reaction Cell (DRC)
, Data Interpretation and Report
Generation ($\mu \mathrm{g} / \mathrm{g}$)

Sample Preparation

- Sample Preparation

Matrix matched standards
Avoid contamination (polypropylene containers)
No microwave digestion required
Samples are diluted in nitric acid and water.

- Advantages

More samples can be analyzed in a limited time

- Improves precision especially for volatile analytes (like Hg) and abundant contaminants (like Cu)
- For Hg only

Gold is used as a stabilizer in standards
Gold added to samples to match the standard according to USP requirement

Selection of analyte isotopes

, Choose the most abundant isotope with least interferences
, Some isotopes of different elements overlap

- Primary isotope is used for quantification and secondary is used for confirmation
- Some elements are monoisotopic
- For lead, sum of all isotopes is used

Element	No. Isotopes	Primary	Secondary
Vanadium	2	51	50
Chromium	4	52	53
Cobalt	1	59	-
Nickel	5	60	62
Copper	2	63	65
Lithium	2	7	6
Arsenic	1	75	-
Tin	10	117	118
Cadmium	8	112	111
Antimony	3	121	123
Barium	6	137	135
Molybdenum	7	94	96
Mercury	7	200	202
Lead	4	$206 / 207 / 208$	NA

Selection of Internal Standards (IS)

- IS corrects for the loss of analyte during sample preparation or instrument drift.
, IS should not be present in the sample
- IS should have similar characteristics to analyte (close mass)
, IS should be added to all standards and samples

Element	Mass	Sc 45	Ge 74	Y 89	In 115	Bi 209
Lithium	7	\times				
Vanadium	51	\times				
Chromium	52	\times				
Cobalt	59	\times				
Nickel	60	\times				
Copper	63		\times			
Arsenic	75		\times			
Molybdenum	94			\times		
Tin	117			\times		
Cadmium	112				\times	
Antimony	121				\times	
Barium	137				\times	
Mercury	200					\times
Lead	207					\times

ICP-MS Interferences

Polyatomic Ions

By-product of plasma reaction Maximum effect on period 4 elements

- Arsenic (As)

Cobalt (Co)

- Vanadium(V)
- Nickel (Ni)
- Copper (Cu)
- Chromium (Cr)
- Lithium (Li)
- Tin (Sn)
- Lead (Pb)
- Cadmium (Cd)
- Mercury (Hg)
- Antimony (Sb)
- Barium (Ba)

Molybdenum (Mo)

Analyte I sotope	I nterfering ion
${ }^{51} \mathrm{~V}^{+}$	${ }^{35} \mathrm{Cl}^{16} \mathrm{O}^{+}$
${ }^{52} \mathrm{Cr}^{+}$	${ }^{36} \mathrm{Ar}^{16} \mathrm{O}^{+},{ }^{40} \mathrm{Ar}^{12} \mathrm{C}^{+}$
${ }^{59} \mathrm{CO}^{+}$	${ }^{40} \mathrm{Ar}^{18} \mathrm{OH}^{+}$
${ }^{60} \mathrm{Ni}^{+}$	${ }^{44} \mathrm{Ca}^{16} \mathrm{O}^{+}$
${ }^{63} \mathrm{Cu}^{+}$	${ }^{40} \mathrm{Ar}^{23} \mathrm{Na}^{+}$
${ }^{75} \mathrm{As}^{+}$	${ }^{40} \mathrm{Ar}^{35} \mathrm{Cl}{ }^{+}$
${ }^{56} \mathrm{Fe}^{+}$	${ }^{40} \mathrm{Ar}^{16} \mathrm{O}^{+}$
$66 \mathrm{Zn}^{+}$	${ }^{34} \mathrm{~S}^{16} \mathrm{O}_{2}{ }^{+}$
${ }^{78} \mathrm{Se}^{+}$	${ }^{40} \mathrm{Ar}^{38} \mathrm{Ar}^{+}$
${ }^{72} \mathrm{Ge}^{+}$	${ }^{40} \mathrm{Ar}^{16} \mathrm{O}_{2}{ }^{+}$

Matrix interferences

Origination from the matrix of sample

Kinetic Energy Discrimination (KED)

- An inert gas is used in a collision cell
, Both analytes and polyatomic interferences collide with He
- Polyatomic ions have larger collision cross section, they undergo more collisions and lose more kinetic energy
- By setting a voltage barrier between the collision cell and the quadrupole, interferences are removed

Arsenic (As)

Cobalt (Co)
Vanadium(V)
Nickel (Ni)
Copper (Cu)
Chromium (Cr)
Lithium (Li)
Tin (Sn)
Lead (Pb)
Cadmium (Cd)
Mercury (Hg)
Antimony (Sb)
Barium (Ba)
Molybdenum (Mo)

J. Anal. At. Spectrom., 2009,24, 1406

"© 2019 PerkinElmer, Inc. All rights reserved. Printed with permission."

Dynamic Reaction Cell (DRC)

A highly reactive gas is used in the cell
, Usually the interference will react with DRC gas and the interference is removed

13

Method Validation

- The described was validated, as described by the International Conference of Harmonization (ICH) and the United States Food and Drug Administration (FDA) and United States Pharmacopeia (USP) guidelines:
- Linearity
- Selectivity

Accuracy

- Precision - Method/Instrument
- Intermediate Precision
- Range

Robustness (Drift and standard stability)

- Limit of Detection (LOD) / Limit of Quantitation (LOQ)

Linearity, Range, Drift, LOQ

Calibration curve

Include 50\%J, 100\%J and 150\% J for all elements

50\%J and 150\%J standards are used as check standards

Separate set of standards used for Hg containing gold as stabilizer

Standard	1	2	3	4	5	6	7
Metal	Concentration ($\mathrm{ng} / \mathrm{mL}$)						
Cd	0.8	1	1.6	2	2.4	3	3.2
Pb	2	2.5	4	5	6	7.5	8
As	0.8	1	1.6	2	2.4	3	3.2
Hg	0.4	0.5	0.8	1	1.2	1.5	1.6
Co	1.2	1.5	2.4	3	3.6	4.5	4.8
V	0.4	0.5	0.8	1	1.2	1.5	1.6
Ni	2	2.5	4	5	6	7.5	8
Li	10	12.5	20	25	30	37.5	40
Sb	8	10	16	20	24	30	32
Ba	120	150	240	300	360	450	480
Mo	4	5	8	10	12	15	16
Cu	12	15	24	30	36	45	48
Sn	24	30	48	60	72	90	96
Cr	1.2	1.5	2.4	3	3.6	4.5	4.8
Hg	0.4	0.5	0.8	1	1.2	1.5	1.6
$\begin{gathered} \text { J Value } \\ *: \end{gathered}$	-	50\%	-	100\%	-	150\%	-

Linearity, Range, Drift, LOQ

Cd Calibration Curve

, Curve Acceptance Criteria
Each calibration curve consists of six standards
Regression ≥ 0.995
Residuals within 15% of theoretical values QC within $\pm 15 \%$ of theoretical value
, Drift
The drift for Std 2 within 20\%for each target element compared to injection of matrix blank

Accuracy

- Samples were spiked at three concentration levels for each metal across the calibration curve (50\%J, 100\%J and 150\%J) and recoveries were calculated
- Each recovery at each level for all elements must be 70-150\%(USP requirement)
- Recovery were within $100 \pm 20 \%$
- The accuracy experiment was repeated on two (2) additional days.

Cd Recoveries (Day1)

	Blank	50\%J Recovery		100\% J Recovery		150\% J Recovery	
Replicate	Conc. ($\mathrm{ng} / \mathrm{mL}$)	Conc. ($\mathrm{ng} / \mathrm{mL}$)	\% Rec	Conc ($\mathrm{ng} / \mathrm{mL}$)	\% Rec	Conc. (ng/mL)	\% Rec
Day 1 - Analyst I							
1	0.011	0.919	90.9	1.891	94.0	2.813	93.4
2	-	0.936	92.6	1.877	93.3	2.743	91.1
3	-	0.939	92.9	1.861	92.5	2.800	93.0
4	-	0.932	92.1	1.886	93.8	2.813	93.4
5	-	0.977	96.6	1.830	91.0	2.732	90.7
6	-	-	-	1.917	95.3	-	-
Average	0.011	0.941	93.0	1.877	93.3	2.780	92.3
SD	-	0.022		0.029		0.039	
RSD	-	2.3		1.6		1.4	
Global Laboratory							

Selectivity (System Suitability)

Class 1 Selectivity Recoveries

- Samples varied by source (supply origin, lot, etc.)
- Samples were spiked at 100\%J value for each metal, and recoveries were calculated
- Each recovery was within $100+20 \%$

| Replicate | Conc.
 $(\mathrm{ng} / \mathrm{mL})$ | Rec
 $(\%)$ | Conc.
 $(\mathrm{ng} / \mathrm{mL})$ | Rec
 $(\%)$ | Conc.
 $(\mathrm{ng} / \mathrm{mL})$ | Rec (\%) | Conc.
 $(\mathrm{ng} / \mathrm{mL})$ | Rec
 $(\%)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nicotine sample \#1 | | | | | | | | |
| Blank | ND | - | 0.247 | - | 0.107 | - | 0.011 | |
| $\mathbf{1}$ | 4.510 | 90.2 | 2.359 | 105.6 | 1.091 | 98.4 | 1.789 | 88.9 |
| $\mathbf{2}$ | 4.459 | 89.2 | 2.248 | 100.0 | 1.082 | 97.4 | 1.883 | 93.6 |
| $\mathbf{3}$ | 4.498 | 90.0 | 2.256 | 100.5 | 1.091 | 98.3 | 1.821 | 90.5 |
| $\mathbf{4}$ | 4.408 | 88.2 | 2.244 | 99.8 | 1.133 | 102.5 | 1.731 | 86.0 |
| $\mathbf{5}$ | 4.482 | 89.6 | 2.383 | 106.8 | 1.082 | 97.5 | 1.794 | 89.2 |
| Average | $\mathbf{4 . 4 7 1}$ | $\mathbf{8 9 . 4}$ | $\mathbf{2 . 2 9 8}$ | $\mathbf{1 0 2 . 5}$ | $\mathbf{1 . 0 9 6}$ | $\mathbf{9 8 . 8}$ | $\mathbf{1 . 8 0 4}$ | $\mathbf{8 9 . 6}$ |
| SD | $\mathbf{0 . 0 4 0}$ | | $\mathbf{0 . 0 6 7}$ | | $\mathbf{0 . 0 2 1}$ | | $\mathbf{0 . 0 5 5}$ | |
| RSD | $\mathbf{0 . 9}$ | | $\mathbf{2 . 9}$ | | $\mathbf{1 . 9}$ | | $\mathbf{3 . 1}$ | |

Summary

- A method was developed and validated for detection of heavy metals in pure nicotine products
, KED and DRC were employed to remove interferences
- The method has high selectivity and accuracy

Acknowledgements

- Margaret Arroyo
, Fraser Williamson

Thank you for your time and attention.

For further information
Hamid Lotfi, Research and Development Scientist: lotfih01@globallaboratory.com Kim Hesse, Business Development Manager: hessek01@globallaboratory.com

Global Laboratory Services
2107 Black Creek Rd.
Wilson, NC 27893
252-234-4950

