Integrated Approach for Management of Nematodes on Flue-Cured Tobacco in Ontario, Canada

C. Saude, A.D. Shearer and M.D. Richmond Canadian Tobacco Research Foundation

Presentation Outline

- Nematodes in tobacco production
- Approaches to managing nematodes
 - Resistant varieties
 - Fumigation
 - Nematicides
 - Rotational crops
 - Future Research

1-Root Lesion Nematode-*Pratylenchus penetrans*

- Considered the main and economically important nematode of tobacco in Ontario
- Widespread with a broad host range
- Hosts include among other crops potato, ginseng, rye
- Rye is a common rotational crop in tobacco production in Ontario

Nematodes in Tobacco Production 2-Tobacco Cyst Nematode-*Globodera tabacum*

- Recently found and identified in Ontario
- Cyst production makes it difficult to manage
- Fumigants are applied pre-planting and root exudates stimulate Tobacco Cyst
 Nematode eggs to hatch
- At this time, fumigants have dissipated from the soil and will provide little or no control of Tobacco Cyst Nematode

Above ground: symptoms are similar for both Root Lesion and Tobacco Cyst nematodes

Stunting Chlorosis Wilting

Symptoms below ground:

 Tobacco Cyst Nematode: Reduced root mass and cyst production

Root Lesion Nematode: Brown and girdled root lesions

Management

- Resistant varieties, Crop rotation
- Fumigants, Nematicides

Challenges

Targeting the nematodes when they are exposed Crop protection products: Availability, cost, registration, re-evaluations and removal from market

Resistant Varieties

Integrated Management Approach Resistance

- Use of resistant varieties important for successful management of nematodes
- Currently there are no registered varieties that are resistant to Root Lesion or Tobacco Cyst nematodes developed in Canada, however, there is one US resistant variety that is registered in Canada but not widely used
- Working with the Breeding Program to develop methods for screening varieties for nematode resistance
- Focusing on tobacco varieties with resistance to other pathogens

Fumigation

2020_TWC42_Saude.pdf

Integrated Management Approach

Pre-Planting Fumigation

- Soil fumigation is essential in tobacco production for nematode control
- Effective management of Root
 Lesion Nematode
- Also controls other soil borne pathogens (e.g. *Thielaviopsis basicola*) and germinating weed seeds (muck soil)

Integrated Management Approach

Soil Fumigants Registered for Nematode Control (2019)

Fumigant	Active Ingredient	Application rate	Greenhouse/ Field
Basamid	dazomet 97%	3.1kg/100 m2	Greenhouse (muck bed)
Vapam HL	metam sodium 42%	7.1 L/100 m2	Greenhouse (muck bed)
Busan 1020	metam sodium 33%	65-85 L/ha	Field
Busan 1236	metam sodium 42%	50-66 L/ha	Field
Vapam HL	metam sodium 42 %	50-66 L/ha	Field
Chloropicrin 100	chloropicrin 99%	93 L/ha	Field
Pic Plus	chloropicrin 85.1%	108 L/ha	Field

Integrated Management Approach **Dominus (a.i. allyl isothiocyanate = AITC)**

A Biofumigant, evaluated in the field in 2017 and 2018

Treatments:

- Non-fumigated
- Chloropicrin 100 (rate: 23 L/ha band applied)
- Dominus 96% AITC
- (rate: 59 kg/ha- band applied)
- Dominus 67% AITC + 33% Chloropicrin 100 (rate: 62 kg/ha- band applied) **RCBD**, 4 replications

Evaluations:

- Plant growth ۲
- Leaf measurements ۲
- Nematodes (early, mid and late-season) ۲
- Yield (dry weight 2017; cured leaf 2018) ۲
- Cured tobacco leaf chemistry (2018) ۲
- Mean separation: Tukey's (HSD)
- SYSTAT 13

Dominus AITC - Results (2017)

	Root Lesion Nematode (#/kg soil)			Tobacco	Yield (g/plant)		
Treatment	Early Season	Mid Season	Late Season	Early Season	Mid Season	Late Season	
Non-Fumigated	220	60	165 b		205 b	1,635	271.16 b
Chloropicrin 100	185	40	115 b	-	945 c	1,725	289 .90 a
Dominus 97%	150	0	20 a	-	105 a	680	316.80 a
Dominus 67%+ 33% Chloropicrin	195	0	15 a		10 a	1,455	296.45 a
Р	0.756	0.047	0.012		0.033	0.667	0.025

Document not peer-reviewe

Dominus AITC - Results (2018)

	Root Lesion Nematode (#/kg soil)			Tobacco	Yield (kg/ha)		
Treatment	Early Season	Mid Season	Late Season	Early Season	Mid Season	Late Season	
Non-Fumigated	195	90 b	80		20	145	3,014
Chloropicrin 100	100	20 a	220		0	160	2,943
Dominus 97%	140	15 a	40		25	10	2,968
Dominus 67%+ 33% Chloropicrin	115	5 a	40		0	55	3,037
Р	0.739	0.035	0.325		0.555	0.321	0.744

Dominus AITC - Results

Dominus 97%, Dominus 67% + 33% Chloropicrin

- There was a reduction in Root Lesion
 Nematode counts mid and late-season
- Tobacco Cyst Nematode counts mid and late-season high in 2017
- Nematode counts highest for Chloropicrin 100 mid and late-season
- Yield comparable to Chloropicrin 100 treatment

Nematicides

Integrated Management Approach Nematicide Evaluations

Aim: target nematodes before and soon after transplanting

- Trials conducted at growers' fields with known nematode pressure
- Two types of experiments:
 - Small plot efficacy trial
 - Yield evaluated as dry weight per plant
 - Large plot efficacy and quality trial
 - Leaves are harvested, cured, and chemistry and smoke characteristics are evaluated
- Experimental design for all trials: RCBD, replicated 3-4 times
 Evaluations:
- Plant growth and leaf measurements
- Nematode counts (early, mid and late season), yield
- All treatments compared to fumigation (Chloropicrin 100)

Integrated Management Approach Nematicide Evaluations

Nematicide	Active ingredient	Rate	Application time	Year Evaluated
Velum Prime	fluopyram	500 mL a.i./ha	Transplanting	2014-2019
Nimitz (MCW)	fluensulfone	4 kg a.i./ha 1.2 kg a.i./ha	Prior to transplanting Transplanting	2017
Majestene	<i>Burkholderia</i> spp. strain A396	18.7 L/ha	Transplanting,14 and 28 DAT	2019
MBI 306	<i>Burkholderia</i> spp. strain A396	3L/ha 6L/ha	Transplanting, 14 and 28 DAT	2019

Integrated Management Approach Velum Prime (a.i. fluopyram)

- Nematicide/fungicide. Evaluated from 2014 to 2019
- Efficacy, quality trials and observation trials were conducted
- Multiple methods of application tested:
 - Pre and post transplanting soil incorporation
 - At transplanting
 - After transplanting
 - Following millet cover crops
 - Following fumigation

Integrated Management Approach

- Velum Prime (a.i. fluopyram)
- 2018-2019
 - **Treatments:**
 - Non-fumigated control
 - Chloropicrin 100 (rate: 23 L/ha band applied)
 - Velum Prime 500 mL a.i./ha transplant water
 - Velum Prime 500 mL a.i./ha transplant water + Chloropicrin 100
- Product applied into the tobacco root zone
- RCBD, 4 replications

Velum Prime - Results (2018)

	Root Lesion Nematode (#/kg soil)			Tobacco	Yield (kg/ha)		
Treatment	Early Season	Mid Season	Late Season	Early Season	Mid Season	Late Season	
Non-Fumigated	195	90 b	80		20	145	3,014 b
Chloropicrin 100	100	20 a	220		0	160	2,943 b
Velum Prime TW	70	15 a	10	-	55	80	3,324 a
Velum Prime TW+ Chloropicrin 100	110	5 a	0		5	80	3,372 a
Р	0.440	0.026	0.226		0.554	0.726	0.000

- Document not peer-reviewec

Velum Prime - Results (2019)

	Root Lesion Nematode (#/kg soil)			Tobacco	Yield (kg/ha)		
Treatment	Early Season	Mid Season	Late Season	Early Season	Mid Season	Late Season	
Non-Fumigated	50	45	150		20	100	4,091 b
Chloropicrin 100	290	15	145		1,840 (1 plot)	1,290	4,260 b
Velum Prime TW	160	125	40		1,080 (1 plot)	810	4,089 b
Velum Prime TW+ Chloropicrin 100	330	15	50			85	4,593 a
Р	0.412	0.270	0.699			0.417	0.000

Velum Prime - Results

- Velum Prime: there is a reduction in Root Lesion
 Nematode counts mid and late-season
- Nematode counts highest for fumigation treatment mid and late-season
- Plant phytotoxicity=stunted plants
- Yield: High in 2018 for both Velum Prime treatments. 2019 highest for Velum Prime and fumigation
- Fumigation followed by Velum Prime? Cost!

Integrated Management Approach Majestene/MBI 306 (a.i. *Burkholderia* spp. strain A396)

Bionematicides (2019)

- Efficacy trial-small plots
- Treatments applied with the transplant water and banded 14 and 28 days after transplanting
- Banded treatments applied with a CO₂ backpack sprayer
- RCBD replicated 3 times

Treatment	Rate		
Non-Fumigated			
Chloropicrin 100	23.9 L/ha		
MBI 306 1X	3L/ha		
MBI 306 1X + Chloropicrin 100	3L/ha + 23.9 L/ha		
MBI 306 2X	6 L/ha		
Majestene	18.7 L/ha		

Bionematicides - Results (2019)

	Root	Yield (g/plant)		
Treatment	Early-Season			
Non-Fumigated	933	367	1,300	240.36
Chloropicrin 100	207	53	1,267	298.52
MBI 306 1 X	793	507	1,193	202.46
MBI 306 1 X TW+ Chloropicrin 100	347	27	2,367	295.27
MBI 306 2X	953	607	1,667	237.47
Majestene	1,700	497	1,640	230.58
Р	0.494	0.300	0.239	0.056

20(48) Document not peer-review

Bionematicides - Results

- Nematode: Root Lesion Nematode
- Treatment effect on Tobacco Cyst Nematode not evaluated
- Root Lesion Nematode mid-season reduction, particularly when the fumigant was applied
- Yield similar for all treatments-slightly improved when the fumigant was used

Rotational crops

Integrated Management Approach Rotational Crops - Millet vs Rye

- **Rye: (***Secale cereale*)- Commonly used rotational crop in tobacco production. One year rotations (tobacco rye tobacco)
 - Rye is a host of Root Lesion Nematode
 - Economic value of other possible crops an issue
- Millet: Common Millet (*Panicum miliaceum*) and Forage Pearl Millet Hybrid (*Pennisetum glaucum*) are being evaluated

 Nematode reduction in other crop systems in rotations with Forage Pearl Millet, including Root Lesion Nematode in tobacco
 Question: Can millet reduce Tobacco Cyst Nematode when used as a rotational crop?

Integrated Management Approach Rotational Crops - Millet vs Rye

- Rye, Pearl Forage Millet and Common Millet grown in 2018 and tobacco in 2019
- Plot had tobacco grown in 2017
- Rye plots were used for fumigation and nonfumigation treatments in 2019
- RCBD, 4 replications
- **Evaluations**
- Nematode counts
- Yield (Dry weight/plant)

Rotational Crops - Results

	Root Lesion Nematode (#/kg soil)			Tobacco	Yield (g/plant)		
Treatment	Early Season	Mid Season	Late Season	Early Season	Mid Season	Late Season	
Non-Fumigated	25	25	160	238	263	2,450	288.50
Chloropicrin 100	115	30	280	313	388	3,125	313.60
Common Millet	15	30	100	613	525	2,900	303.97
Forage Pearl Millet	20	10	35	338	450	3,575	343.49
Р	0.058	0.734	0.132	0.676	0.852	0.821	0.554

Rotational Crops - Results

- Nematode counts: RLN Early, mid-season reduction and increase late-season
- Tobacco Cyst Nematode about the same early and mid-season and high late-season
- Yield similar for all treatments, however, slightly higher for fumigation and the millet crops
 - Repeating this evaluation: Millet crops in 2019 and tobacco in 2020

Integrated Management Approach Summary

Resistant Varieties

 Developing a screening methodology focused on varieties with resistance to other pathogens

Fumigation

 Provides control for early to mid-season, however, late-season nematode counts approach initial populations

Dominus shows good control in preliminary evaluations

Integrated Management Approach Summary

Nematicides

- Velum Prime seems to provide good control, especially when used in combination with fumigant
- Bionematicides were not successful in 2019

Cover Crop

- Millet appears to lower Root Lesion Nematode pressure but not Tobacco Cyst Nematode
- There seems to be an inverse/competitive relationship between Root Lesion and Tobacco Cyst Nematode

Future Work

- Screening for resistant varieties to both nematodes
- Evaluation of:

Biofumigants (mustard derived) Nematicides / bionematicides:

- application methods
- timing
- Explore more cover crops

Thank you to: **Grower cooperators** Manufacturers for providing research products - CTRF team Questions Comments

Suggestions