

Regulatory effect of topping on K⁺ flux and gene expression in tobacco roots

Taibo Liang

Zhengzhou Tobacco Research Institute of CNTC, CHINA

E-mail: taibol@163.com

CONTENT

Introduction

Materials & Methods

Results

Conclusion

Introduction

- Topping is an important agronomic measure in tobacco production.
- Topping can cause serious damage to tobacco plant, which can lead to the loss of potassium.
- The mechanism of K⁺ uptake and efflux from tobacco roots after topping is not very clear.

Introduction

- Why does topping lead to potassium loss in tobacco plants?
- Can exogenous substances make up for the loss of potassium in tobacco plants caused by topping?

Objective:

Through the study of K⁺ flow rate and gene expression in tobacco roots, to reveal the mechanism of potassium loss of tobacco plants caused by topping.

2021_AP0

Non-invasive Micro-test Technology

Materials and Methods

Cultivar: **EY-1** (high potassium content)

Y87 (low potassium content)

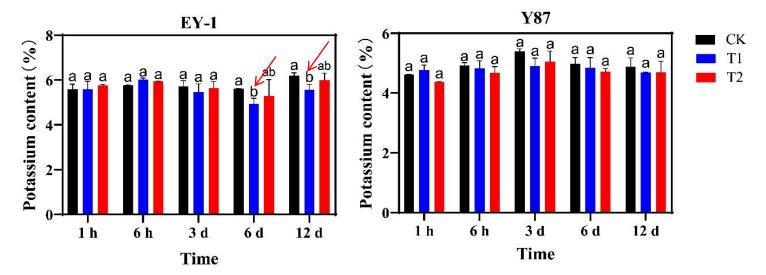
Culture medium: Sand pot culture

Simulated topping design

CK: control

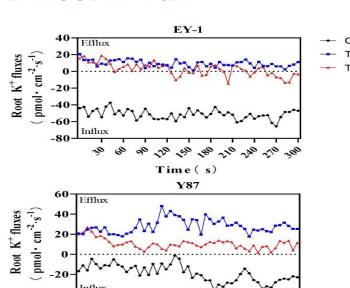
T1:Topping

T2: Topping + IAA

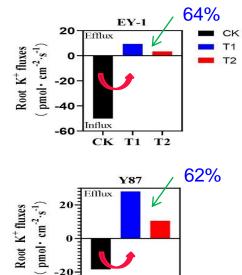


2021_AP0

Results

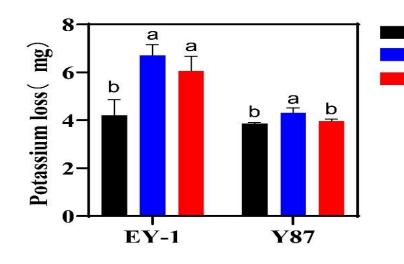

1. Potassium content

The potassium content of EY-1 decreased significantly in 6d and 12d after topping. Topping also reduced the potassium content of Y87 leaves.



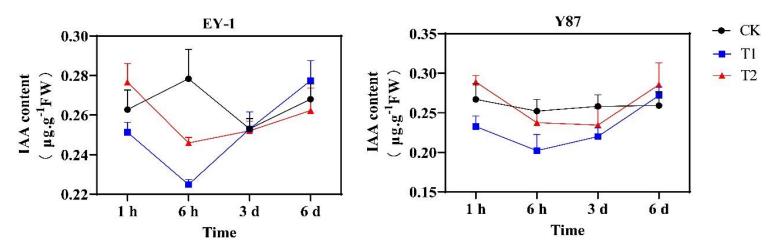
2. Root K+ flux

150 180


Time(s)

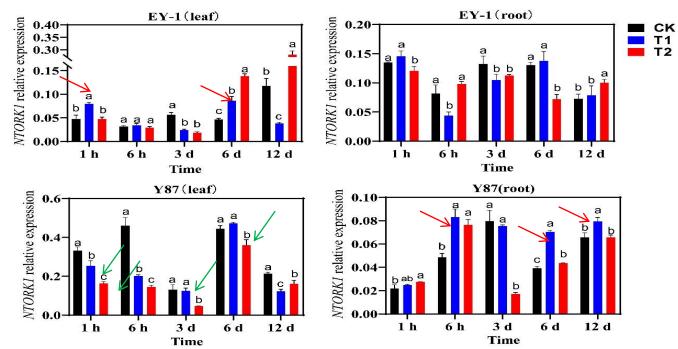
CK T1

- The K+ flux direction of the two varieties changed from influx to efflux after topping.
- IAA reduced the K⁺ efflux caused by topping.

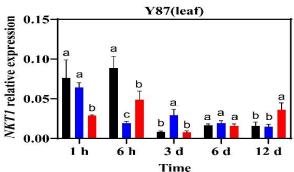

3. Potassium loss

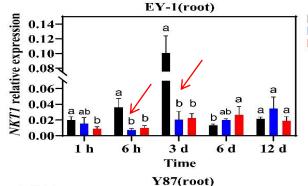
Topping increased the potassium loss of tobacco plants significantly. IAA could effectively reduce the potassium loss of tobacco plants caused by topping.

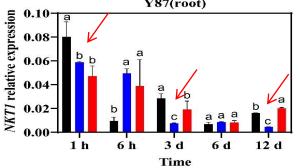
CK


4. IAA content

Topping significantly reduced IAA content in tobacco plants. Exogenous IAA has a compensation effect on IAA loss caused by topping.


5. Potassium efflux channel gene NTORK1 expression





6. Potassium influx channel gene NKT1 expression

Topping decreased the expression of *NKT1* in EY-1 leaves and Y87 roots.

Conclusion

- ➤ Topping changed K⁺ flow direction of the two varieties from influx to efflux, and finally reduced the potassium content of tobacco plants.
- ➤ Topping inhibited IAA synthesis and regulated potassium related gene expression, which was an important reason for potassium loss of tobacco plants.
- The application of IAA can compensate for the negative effects of topping, such as the decrease of IAA content, the down-regulation expression of K⁺ influx channel gene and the decrease of potassium content.

Conclusion

- ➤ The response of potassium uptake related genes to topping treatment varied with varieties and organs. The response of leaves to topping was greater than that of roots.
- ➤ The effect of topping on *NKT1* of EY-1 leaves was greater than that of Y87, which was closely related to the difference of potassium absorption characteristics between the two varieties.

