

Evaluation of Novel Biological Control Rhizobacteria for Management of Angular Leaf Spot in Dark Tobacco

Natalia Martinez-Ochoa, Courtney A. Shields, Mariana Araujo-Alves, Amy Joubert, and Robert D. Miller.

Department of Plant and Soil Sciences

University of Kentucky

Lexington, Kentucky U.S.A.

Angular Leaf Spot

- Pseudomonas syringae pv. tabaci (tox-)
- Foliar Disease
- Increasing in Kentucky since 2016
- Bacteria are spread in water droplets
- Favored by cloudy wet weather
 - We obtained Pst. isolate #455 from Dr. Emily Pfeufer
- Streptomycin currently used
 - Environmental Antibiotic Resistance

Bacterial Selection

- Chose list of **32 bacterial strains** to be tested against *Pseudomonas syringae* pv. *tabaci*
 - Collection of rhizobacteria from Dr. Joseph W. Kloepper at Auburn University (by Material Transfer Agreement). These have shown to induced systemic resistance in several crops.
 - Most of genus Bacillus-Commonly used for Biological Control
 - Other genera include:
 - Serratia
 - Burkholderia
 - Strenotrophomas
 - Microbacterium

Overview of Methods

In-vitro antibiosis

Greenhouse Trials

In-vitro Antibiosis Experimental Design

Method: Disk diffusion on solid media

Media: Trypticase Soy Agar (TSA)

Pathogen: Pseudomonas syringae pv. tabaci (Pst.)

Treatment on disks: Rhizobacterial strains

Experimental Unit: One TSA plate with 3 disks

of rhizobacteria and a water control disk

Replications: 3

Arrangement: Completely randomized

Environment: 28 °C

In-vitro Antibiosis Results

Table 1

In-vitro antibiosis of AU rhizobacteria vs. Pseudomonas syringae pv. tabaci on TSA

	Average Inhibition Zone (mm)		
Strains/dilutions	0	-1	-2
Bacillus cereus/proteolyticus (AP-94)	0	0	1.72
Bacillus safensis (AP-110)	1.78	3.08	4.78

Other Strains chosen for greenhouse testing based on history of biocontrol with other bacterial pathogens in tomato:

- Serratia marcescens (AP-4)
- Bacillus altitudinis (AP-281)

Hypothesis

One or more of the selected rhizobacteria will reduce the incidence of Angular Leaf Spot (ALS) in dark tobacco

Greenhouse Experimental Design

- Tobacco Variety: Dark Tobacco KT D8 (most susceptible to ALS)
- Environment: Greenhouse at 27 °C and 50 70 % relative humidity
- Treatments:
 - Healthy Check (Untreated Control)
 - Disease Check (Pathogen Only)
 - Rhizobacterial Strains
- Experimental Unit: One Plant
- Replications: 5
- Arrangement: Randomized Complete Block (RCB)

Rhizobacteria Inoculation Methods

Spray Method

- 2 TSA plates of rhizobacteria diluted in 1 L DI water
- 20µl Silwet
- Spray 35 50 mL per plant
- Arrange according to RCB labels

Soil Drench Method

- 2 TSA plates of Rhizobacteria diluted in 500 mL DI water
- 100 mL poured per plant

Challenging with *Pseudomonas syringae* pv. *tabaci*

- **Spray inoculation**: challenged with *Pst* after **24 hours**
- Soil drench inoculation: challenged with ALS after 7 days
- Light water mist applied first
- Solution: 2 KB plates of pathogen per Liter of DI water + 20μl of Silwet (adjuvant)
- 35 50 mL sprayed per plant
- Arranged in trays using RCB

Greenhouse evaluations

- Counting <u>number of lesions</u> after **7 days**
- Determine total disease area in each leaf after 14 days

Total Leaf Area

Diseased Leaf Area

Statistical Analysis

ANOVA

• Student's t-test

Consulted with a statistician

Experiments I-II (Spray)

Treatment	Average Total # of lesions	Average total % disease
1: Healthy Check	-	-
2: Disease Check	99	0.34
3: B. cereus/proteolyticus (AP-94)	63	0.32
4: <i>B. safensis</i> (AP-110)	104	0.21

Experiment I (Soil drench)

Treatment	Average Total # of lesions	Average total % disease
1: Healthy Check	-	-
2: Disease Check	495 a	2.45 a
3: S. marcescens (AP-4)	22 b*	0.10 c*
4: B. cereus/proteolyticus (AP-94)	309 ab	0.77 bc*
5: B. safensis (AP-110)	347 a	1.14 bc*
6: B. altitudinis (AP-281)	524 a	1.70 ab

AP2021 - Document not peer-reviewed by CORESTA

Experiment II (Soil drench)

Treatment	Average Total # of lesions	Average total % disease
1: Healthy Check	-	-
2: Disease Check	135 a	0.48 a
3: S. marcescens (AP-4)	49 b*	0.14 b*
4: B. cereus/proteolyticus (AP-94)	99 ab	0.26 ab
5: <i>B. safensis</i> (AP-110)	106 ab	0.33 ab
6: B. altitudinis (AP-281)	71 ab	0.20 b*

Conclusions - part I

Serratia marcescens (AP-4)

- The most promising of the four rhizobacterial strains tested
- Showed reduction in disease in two experiments with in lesion count and % diseased leaf area

Bacillus cereus/proteolyticus (AP-94)

- Inhibited growth of Pst in-vitro
- Showed reduction in % diseased leaf area in the first experiment only

Bacillus safensis (AP-110)

- Inhibited growth of Pst in-vitro
- Showed reduction in % diseased leaf area in the first experiment only

Bacillus altitudinis (AP-281)

Showed reduction in % diseased leaf area only in the second experiment only

Conclusions – part II

- Inoculation via soil drench worked better than the spray method, confirming the findings
 in Kloepper's lab, that induced systemic resistance could be involved in reducing ALS with
 rhizobacteria inoculations.
- Further research should be conducted to confirm the results found and improve consistency of disease incidence under greenhouse conditions.
- **Future experiments** will include testing mixes of 2 or 3 rhizobacteria and different time intervals biocontrol inoculation-pathogen challenge. The remainder 28 strains will be tested in the greenhouse as well.
- Serratia marcescens (AP-4) showed **potential** to be used as a biological control for treating angular leaf spot in dark tobacco, and could be included in **preliminary field trials** in 2022.

Acknowledgements

Sponsor: Kentucky Tobacco Research & Development Center - KTRDC

Work study students: Courtney A. Shields, Mariana Araujo Alves Gomes de Souza, and Amy Joubert

University of Kentucky statistician: Matthew Rutledge

Questions?

Natalia Martinez-Ochoa, Ph.D. Plant Pathologist

Natalia.Martinez@uky.edu

