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Modeling Examples for Inhaled Aerosols & Vapors

State-of-the-art inhalation modeling approaches for cross-species and in vitro to in vivo
comparisons to assess human health risks

* 3D Imaging-based computational fluid dynamics (CFD) models of the respiratory system

* Incorporate species-specific 3D anatomy, physiology and clearance processes and realistic breathing
and exposure scenarios for site-specific dosimetry

* Ex 1: Ranking relative hazards of tobacco smoke constituents under a harm reduction
strategy using existing animal toxicity and measured human exposure data

* CFD/PBPK modeling for cell- or tissue-specific internal dose
* Corley et al., Toxicol. Sci. 146(2015)65-88

* Ex 2: Reducing/replacing animal toxicity studies for pesticide re-registration with in vitro
toxicity studies with human cells for occupational and residential exposures

* CFD/Aerosol/Mucociliary clearance modeling for region-specific retained dose
* Corley et al., Toxicol. Sci. 182(2021)243-259
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What is Computational Fluid Dynamics or CFD?

In a nutshell...

* Numerical method for describing fluid flows
* Navier-Stokes Equations that describe the flow of a viscous fluid

* Solved using a 3D computational mesh with appropriate boundary conditions (e.g. shape,
mechanical properties, fluid characteristics, pressure, etc.)

* The solution is a flow velocity field over space and time

* Complexities added as needed (equations/mesh refinements) depending upon applications
(e.g. physics of heat transfer, turbulence, material transport within fluids, material
interactions, etc.)

* Methods widely used in aerospace, automotive, energy, building HVAC, etc. industries to
improve design, trouble-shooting, and decrease costs in product development

Source: Fluent News, 2005
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What is Computational Fluid Dynamics or CFD?

* Biological applications are a rapidly growing area with the advent of new imaging, image analysis, and

computational capabilities 4D Imagine 3D Imaging
“x

* 3D/4D MRl and CT
*  Mod-High resolution

Image
Registration

*  Dynamic

* Structure & Function Airway/Tissue Mechanics

* What once took months,
can now be done in days CFD Simulation

* Personalized models are rﬁl
possible
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Multiscale
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Corley et al. Toxicol. Sci. 128(2012)500-516
Corley et al. Toxicol. Sci. 146(2015)65-88 e

Jacob et al. Exp. Lung Res. 41(2014)135-145 Airway Blocking
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Ex 1: Multi-Scale CFD/PBPK for Reactive Aldehydes

CH,
Formaldehyde Hzc’/O Acetaldehyde c|>|/ Acrolein f\\*CHz

* Highly reactive, water-soluble vapors

* Important industrial chemical intermediates as well as by-products of combustion
including smoking of tobacco products
 Difficult to directly measure in tissues, endogenously produced and have dietary sources of
exposure

* Cytotoxicity and tumors in specific sites within nasal and upper respiratory tissues of
rodents drive many human health risk assessments

* Site-specificity of lesions and species differences in anatomy, physiology and tissue
clearance rates warranted a combined CFD/PBPK approach
* Previous constituent risk comparisons often lacked species-, site-, or exposure-specific dosimetry
considerations

* Took advantage of existing CFD and PBPK models and realistic exposures to create a
combined approach
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Ex 1: CFD/PBPK for Reactive Aldehydes

Model Structure
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Ex 1: CFD/PBPK for Reactive Aldehydes

AUC Tissue Concentration “Hot Spots” vs. Lesions

Acetaldehyde
(Rat NOAEL = 50 ppm)

AUC (Kg'sim*2)
3.53E-07
3.19E-07
2.86E-07
2.52E-07

2.18E-07
1.85€-07
1.51E-07

1.18E-07
8.40E-08
5.04E-08
1.68E-08

Enzyme Location is Key Determinant
= AUC dosimetry maps to histopathology

Corley et al. Toxicol. Sci. 146(2015)65-88
Dorman et al. Inhal. Toxicol. 20(2008)245-256

AUC Tissue Concentrations
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Ex 1: CFD/PBPK for Reactive Aldehydes

Human Exposure via Cigarette Smoking

Flow Rate (ml/s)
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* Measured human puff profile

St. Charles et al. Inhal. Toxicol. 21(2009)712-718)

* Measured smoke compositions for representative
puff concentrations

(2C207l§nts et al. Reg. Toxicol. Pharmacol. 41(2005)185-

Acetaldehyde — 1028 ppm (857 ug/cig)
Acrolein — 94 ppm (100 ug/cig)
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Corley et al. Toxicol. Sci. 146(2015)65-88
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Ex 1: CFD/PBPK for Reactive Aldehydes

Comparative Dose Cigarette Smoke Constituents

Acrolein
(Rat NOAEL = 0.2 ppm; Puff = 94 ppm)
010 cig/d 20cig/d W40 cig/d
---Rat Olfactory LADD
---Rat Respiratory/Transitional LADD

{ g oF
W N <& & & & & & & &
‘@(-\‘*Q & ha S &g
R
o°
Formaldehyde

(Rat NOAEL = 1 ppm; Puff = 108 ppm)

O10cig/d " 20cig/d W40 cig/d

Rat - Human comparisons based upon ‘Hot Spot’ AUCs
and Exposure-Duration/#cigs per day Adjustments

LADD Rat: NOAEL AUC, .,,/breath * bpm * 360 min/d * 5d/7 d
LADD Human: AUC, ., /puff * 11 puff/cig * no. cigs/d

Rank order:
Acrolein > Formaldehyde > Acetaldehyde

No significant differences when simulated as a mixture with
competitive metabolism

Acetaldehyde
(Rat NOAEL = 50 ppm; Puff = 1024 ppm)

010 cig/d 20 cig/d W40 cig/d
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Ex 2: Syngenta’s Pesticide Re-Registration
Chlorothalonil

* A widely-used fungicide since 1966
* Labeled for >65 crops
* Also used as a wood protectant, anti-mold and anti-mildew agent, bacteriocide,
microbiocide, algaecide and insecticide
e Contact irritant by all routes of exposure

* Extremely low volatility and water solubility
* Formulated as a solid or liquid suspension
* Applications typically water-diluted spray

* Aerosol inhalation studies in rats with formulation (acute through 2-week)

. IEpithelial degeneration/necrosis primarily in nose and larynx; minimal effects in trachea and
ung

* Squamous cell metaplasia in nose and larynx
* Lesions resolved or reduced following 2-wk recovery
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Ex 2: Syngenta’s Pesticide Re-Registration
Inhalation Risk Assessment

* Replace requirement for 90-day rat inhalation toxicity study with in vitro studies in
human cells coupled to enhanced characterization of exposure and target dose relevant

to risk characterization
HEC
Inhalation Risk

Exposure

Characterization

In vitro Testing Based Point of Departure using MucilAir™ from Epithelix

HEC

A 4
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Ex 2: CFD/Particle Dosimetry for Cross-Species and IVIVE
Oral Breathing
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Ex 2: Clearance Model
Abbreviated ICRP (2015)
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Ex 2: CFPD/CL Human Simulations at Rat LOAEL

AUC Retained Dose vs. In vitro BMDL
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Exposures for 8-hr/day, 5 consecutive days followed by 2 days no exposure
* Day-to-day steady-state retention profile achieved in 2-3 days
* AUC retained doses determined for final exposure day

* AUC compared to BMDL*24 hr (CxT)

* HEC=(BMDL/AUC) * Aerosol Conc * Active Ingredient Conc

Corley et al. Toxicol Sci. 18(2021)243-259
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Ex 2: Revised Human Risk Assessment for Inhalation
Exposures

* EPA determined the NAM using human in vitro data and CFPD dosimetry
was appropriate for evaluating potential risk for inhalation exposure to
direct contact irritants

* Waved requirement for additional 90-d rat inhalation studies (EPA, 2021).

 Human equivalent concentrations (HEC) and human equivalent doses (HED)
calculated for 2, 8 and 24-hr exposures based upon human in vitro BMDL’s for
multiple polydisperse aerosol scenarios

* Interspecies UF reduced to 1X (both dosimetry and toxicity determined in human)

* Intraspecies UF reduced to 3X (ADME not likely an impact for direct contact
irritant/cytotoxicant)

* Revised draft assessment and supporting documents open for comment until
Sept. 20, 2021, at: https://www.regulations.gov/docket/EPA-HQ-OPP-2011-0840

* Manuscripts for the human in vitro toxicity study (accepted) and human health risk
assessment (in review) have also been submitted

15
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https://www.regulations.gov/docket/EPA-HQ-OPP-2011-0840

Bottom Lines

* CFD-based models are well-suited for calculating HEC’s from in vitro and in vivo target tissue doses when site-
specificity is important for inhalation toxicity (typically upper conducting airways)

« Avaluable part of an overall toolkit for modeling inhalation exposures

* These approaches have been used to refine human risk assessments as well as reduce or even replace animal studies
by regulatory agencies
* Topics not covered but still important include:
* Model evaluation and verification/validation were key components to both examples
* See references included at the end of this presentation including those used in the case studies
* Models can be templated or adjusted to fit new materials or exposure scenarios (no need to start from scratch)
* Airway geometries available for multiple humans and animal models (see Selected References)
* Existing CFPD simulations are being used to predict site-specific doses for other aerosols that have similar properties

* CFD models are ideal for site-specificity in upper conducing airways (nose/mouth to generation 5-10) but do not describe the
deep lung due to limitations in imaging and the computational challenges

* However, the Multiple Path Particle Dosimetry (MPPD) model is ideal for predicting regional dosimetry in the deep lung
and is now being adopted by the U.S.EPA to replace its RDDR model

* MPPDis available (free) at: https://www.ara.com/mppd/

* CFPD models have also been linked with the MPPD model to provide full respiratory system coverage (Kuprat et al., J.
Aerosol Sci. 151(2021)105647) and take advantage of, and compensate for, the strengths and weaknesses of each model

* Ongoing work: disease influences on tissue mechanics are now being incorporated into the CFPD/MPPD model
and validated against experimental data in humans and rats
16
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Glossary

AUC = Area under the curve, typically of a concentration vs. time curve

CFD = Computational fluid dynamics

CFPD = Computational fluid-particle dynamics

Cmax = Maximum concentration, typically of a concentration vs. time curve
CT = X-ray computed tomography

EPA = U.S. Environmental Protection Agency

FIFRA SAP = Federal Insecticide, Fungicide, and Rodenticide Act Scientific Advisory Panel to EPA
HEC = Human equivalent concentration (typically mg/L or mg/m3)

HED = Human equivalent dose (typically mg/kg/d)

HVAC = Heating, ventilation, air conditioning

ICRP = International Commission on Radiological Protection

MMAD = Mass median aerodynamic diameter

MPPD = Multiple path particle dosimetry model

MRI = Magnetic resonance imaging

NCRP = National Council on Radiation Protection

PBPK = Physiologically based pharmacokinetic model
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