An 18-month e-liquid stability study

John H. Lauterbach, Ph.D., DABT
Lauterbach \& Associates, LLC
211 Old Club Court, Macon, GA 31210-4708 USA

Outline for presentation

- Basis for the research
- Change in color of e-liquids in pods and tanks during use
- Change in taste of aerosol with changes in power
- Prior research showed that even moderate temperatures caused changes
- Protocol for determining chemical changes over aging
- Sampling
- Chromatographic analyses
- Example chromatograms showing differences - frozen versus aged
- Chromatography of samples diluted prior to injection
- Injection of undiluted e-liquids
- Injection of undiluted e-liquids containing menthol
- Conclusions

Sampling protocol for the aging study

- Products for the study - all 120 mL bottles -- received early October

1. "CHRUNCHY COOKIE" and "COCONUT"
2. "CHERRY PIE" and "CUSTARD"
3. "BLUE RASPBERRIES" and "CANDY"
4. "CHOCO CHIP COOKIE" and "VANILLA ICE CREAM"

- Weekly sampling beginning on 31 OCT 2019
- Two samples were squeezed from each bottle into 4 mL screwcap glass vials
- One set was kept at ambient conditions, the other placed in chest-type freezer
- 120 mL bottles kept at ambient conditions
- Both ambient and frozen samples of Products 1 and 4 were taken on 6 Feb. 2020 and sent to Labstat International for Neutral Red Uptake cytotoxicity assays
- Lab operations suspended on 6 Mar. 2020 on account Covid-19. All frozen samples kept frozen; all ambient samples kept on laboratory desk
- Final sample analyses begun on 8 May 2021

Chromatography protocol for the aging study

- Samples analyzed after dilution with methanol to 1 \% and 10 \%
- Isocratic system with loop injection valve and variable wavelength UV detector
- Acetonitrile /water mobile phase at $75 / 25,50 / 50$, or $25 / 50$ mixtures ($1 \mathrm{ml} / \mathrm{min}$)
- Cogent Bidentate C18 and Phenyl Hydride columns ($250 \times 4.6 \mathrm{~mm}$)
- $10 \mu \mathrm{~L}$ injection volume
- Use 195 nm and 280 nm for UV detection (separate injections each wavelength)
- $1 \mu \mathrm{~L}$ injection volume as described below with Bidentate C18 column
- Samples analyzed without dilution
- Isocratic system with loop injection valve and differential refractometer detector
- Acetonitrile /water mobile phase at 75/25 mixture at $1 \mathrm{~mL} / \mathrm{min}$
- YMC Triart C18 column ($250 \times 4.6 \mathrm{~mm}$)
- $1 \mu \mathrm{~L}$ injection volume
- Both column oven and detector thermostatted at $35^{\circ} \mathrm{C}$
- Final sample analyses begun on 8 May 2021
- Mobile-phase ($10 \mu \mathrm{~L}$) injected between runs to clean system

Index of chromatograms

Slide Number	Product Number or Name	Chromatographic conditions	Important differences frozen (or new) versus aged
6	2	Bidentate C18, UV 280 nm 25 acetonitrile 75 water	Increased height of peak at 14 minutes in aged, likely PG acetal of aromatic aldehyde
7	4	Bidentate C18, UV 280 nm 25 acetonitrile 75 water	Only clear difference is increase in height of peak just before 2 minutes in aged product
8	1	Bidentate C18, UV 280 nm 25 acetonitrile 75 water	Aging eliminated peak at 9 minutes and deceased peak at 13 minutes
9	3	Bidentate C18, UV 195 nm 75 acetonitrile 25 water	Aging eliminated broad peak at 15 minutes
10	4	Triart C18, RID 75 acetonitrile 25 water	Aging reduced height of peak just after 6 minutes
11	V2 Menthol 2.4	Triart C18, RID 75 acetonitrile 25 water	Aging reduced height of menthol peak (just before 6 minutes but others increased

Frozen versus aged - Product 2280 nm BiDC18

Frozen versus aged - Product 4280 nm BiDC18

Frozen versus aged - Product 1280 nm BiDC18

Frozen versus aged - Product 3195 nm BiDC18

Frozen versus aged - Product 4 RID Triart C18

New versus old - V2 Menthol 2.4 RID Triart C18

Conclusions

- Most e-liquids will change with time when kept at room temperature
- Apparent changes may include
- Loss of volatiles
- Reaction of propylene glycol and possibly glycerol with aromatic aldehydes
- E-liquid product changes can be found with simple LC instrumentation and conventional $250 \times 4.6 \mathrm{~mm}$ columns
- Samples can be analyzed without dilution with $1 \mu \mathrm{~L}$ injection
- Saves sample preparation time
- Permits use of refractive index detectors
- The cytotoxicity assays on frozen product and product aged for six months under ambient conditions did not show any differences
- It is helpful to have multiple batches of each brand-style to be investigated along with samples of flavors commonly used in e-liquids

