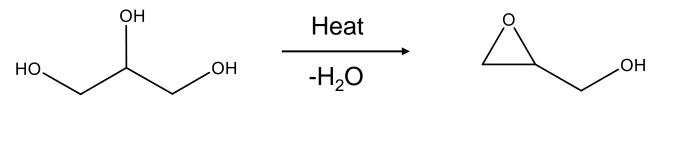
Juul Labs Science

EVIDENCE FOR ARTEFACTUAL FORMATION OF GLYCIDOL DURING THE ANALYSIS OF ELIQUIDS.

I. Gene GILLMAN, Devon C. O'Regan, Adam M. Ozvald, David K. Cook, Lena Jeong and Xin Chen;

JUUL Labs, Washington, DC USA



21(74) - Document not peer-reviewed by CORESTA

Background

Glycidol

- Probable carcinogen found in e-cigarette vapor.
- Detected in e-cigarette aerosol in 2016 by Sleiman et al[#]
- Aerosol was generated using an Ego CE4 Tank and Kangertech Aerotank
 - Samples were analyzed using Thermal Desorption with GC-MS detection
 - Collected aerosol was found to contain 32 μ g/g^{*} of Glycidol at 3.8V with the Aerotank Tank and 208 μ g/g^{*} of Glycidol at 3.8V with the CE4 Tank
 - Experiments conducted with 100% glycerin and 100% propylene glycol demonstrated that glycidol was a thermal degradation product of glycerin

Sleiman et al, Environ. Sci. Technol. 2016, 50, 17, 9644-9651

* = based on device mass loss during aerosol generation

Pyrolysis of Glycerin

٠

- Pyrolysis of Glycerin can lead to the production of a range of thermal degradation products including formaldehyde, acetaldehyde, acrolein and glycidol.
- Moldvoveanu et al presented on the pyrolysis of glycerin (containing about 10% water) at five different temperatures in the range 350 °C to 750 °C, at three different heating rates 20 °C /ms, 5 °C/ms and 1 °C/ms.
- Formation of Glycidol began between 450 °C to 550 °C

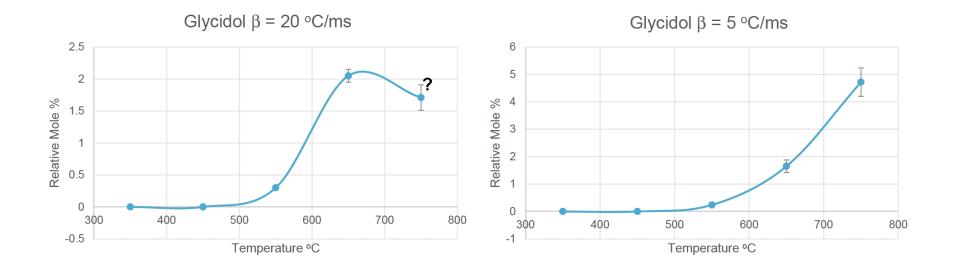
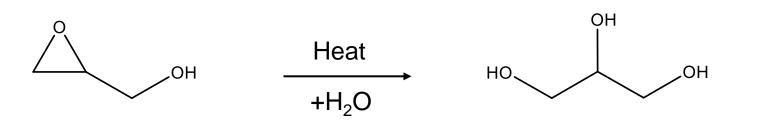


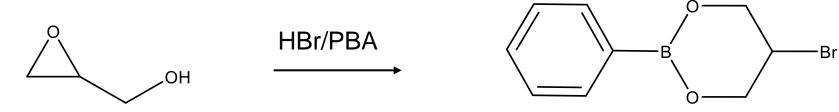
Image from: Pyrolysis of glycerin at different temperatures and heating rates, Moldvoveanu et al TSRC 2018

Formation of Glycidol during GC-MS analysis

- Fraley presented that glycerin could convert to glycidol in a GC inlet at temperatures above 220°C.
- 50 ppm (mg/g) of glycidol was produced at 400°C, with a one-minute residence time in the GC inlet .
- Reported that glycidol can form a glycidol dimer, starting at 100°C, and at elevated temperatures can convert into glycerin.

Juul Labs Science



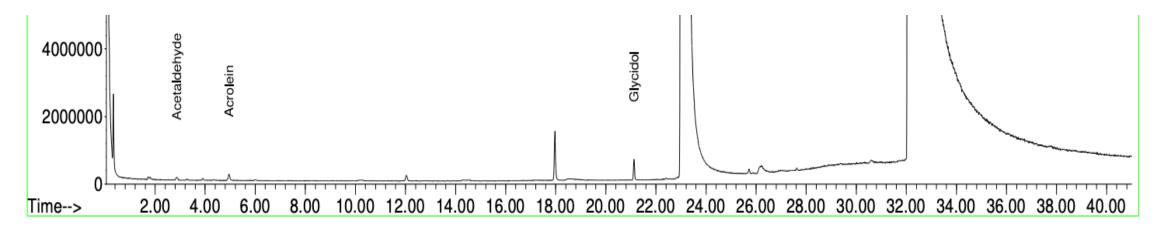

Image from: Glycidol Behavior in GC Systems, Norman Fraley, TSRC 2019

JuulLabsScience.com

Experimental Design

٠

- Pyrolysis of a liquid containing 60% Glycerin and 40% Propylene Glycol
 - Studies were conducted between 350°C and 575°C in 25°C increments
 - 1 minute hold time prior to GC-MS analysis
- Analysis of the flavored e-liquid formulations containing Glycerin, Propylene Glycol and Nicotine.
 - Direct injection, method based on Health Canada method T-115 with GC-MS detection, injector temperature ~250 C
 - Potential from artefactual formation of glycidol during analysis
 - Susceptible to low molecular mass interferences
 - Derivatization of glycidol prior to injection using HBr and Phenyl Boronic Acid (PBA)
 - Unlikely to form artefactual glycidol during analysis
 - Improved method selectivity and sensitivity

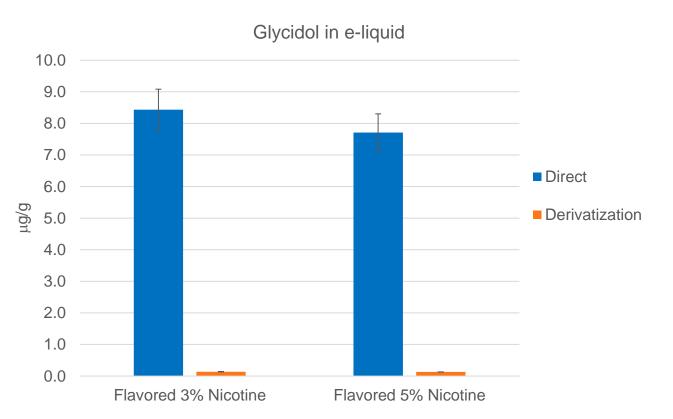

JuulLabsScience.com

Pyrolysis of mixed Glycerin and Propylene Glycol

Samples consisted of 60% Glycerin and 40% Propylene Glycol

٠

- Studies were conducted between 350°C and 575°C in 25°C increments
- Frontier EGA/PY-3030D Pyrolyzer with Eco-Cup LF
- Analysis by GC-MS using an Agilent VF-WaxMS column
- Glycidol was first formed at 475°C and increased in concentration to 575°C



Pyrolysis of Glycerin at 475°C

Method Comparison

٠

- $\sim 8 \,\mu g/g$ of glycidol was measured using the the direct injection GC-MS method
- ~ 0.13 µg/g of glycidol was measured using the PBA derivatization GC-MS method
- Measured levels of glycidol increased by ~60 fold in the Direct injection GC-MS method compared to the Derivatization GC-MS method
- Measured values from the PBA derivatization method were confirmed using a second derivatization method. Values for both methods overlapped within mean and standard deviation of the measured values

Summary

٠

٠

- Our results indicate the direct injection GC-MS analysis can lead to the *in situ* thermal degradation of glycerin to produce quantifiable levels of glycidol.
 - Sleiman et al reported non-detectable levels of glycidol in three e-liquids included in their study.
- Data from two independent derivatization methods demonstrated that ~98% of the measured glycidol from direct injection GC-MS was a by product for the analytical method.
 - The direct injection GC-MS method measured ~8 $\mu\text{g/g}$ of glycidol in two flavored e-liquids.
 - . The PBA derivatization GC-MS method measured ~0.13 $\mu g/g$ of glycidol in the same flavored e-liquids.

Conclusion

٠

٠

- A standardized analytical method for the analysis of glycidol, in e-liquids, does not currently exist.
 - Published or presented work uses a variety of methods including direct injection, cool on column, derivatization and thermal desorption with GC-MS detection.
 - Our work indicates that direct injection GC-MS analysis of glycerin containing samples can result in the generation of artefactual formation of glycidol.
 - Our measured values, using the direct injection GC-MS method represent, 3.8% to 25% of the values reported by Sleiman et al, at 3.8V.*
 - Values reported using the direct injection GC-MS method may be biased high due to the artefactual formation of glycidol.

* Sleiman used a Thermal Desorption GC-MS method that is unlikely to produce artefactual glycidol

Conclusion

٠

•

- Method accuracy should be determined during validation per ICH guidelines. We have demonstrated that comparison of multiple analytical techniques can provide an assessment of method accuracy.
- Our results demonstrate that pyrolysis experiments did not predict the thermal degradation of glycerin that occurred in the GC inlet at 250°C.

Thank you and questions

