

New progress in breeding and biocontrol dual approaches for tobacco broomrapes management

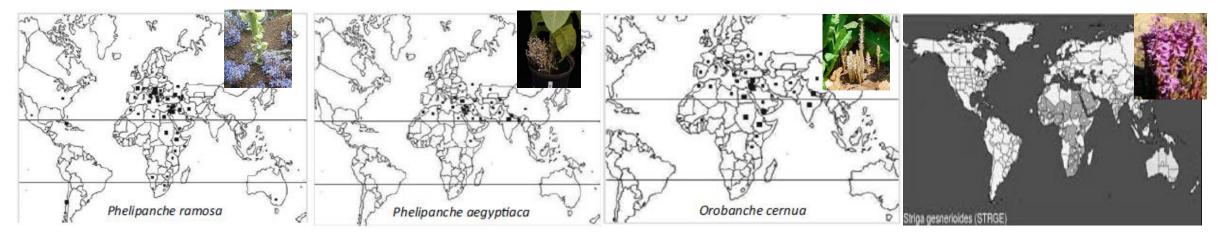
Anna Malpica, AP30, 13th October CORESTA 2022

La Tour - 24100 Bergerac - France

www.bergeracsb.com

Progress in breeding and agronomical approaches for control of tobacco broomrapes

- Parasitical plants affecting tobacco crops: Broomrapes and Striga Physiological cycles and control strategies
- 2. Broomrape/Striga tolerance breeding
- Agronomical trials 2016-2022:
 Broomrape, *P. ramosa* biological control with mycoherbicide
- 4. Conclusion and next steps


Phelipanche ramosa on Tobacco, France 2018

Striga gesnerioides on Tobacco, South Africa 2022, A.Scholtz

Broomrapes affecting tobacco crops

World distribution of broomrape species. Larger symbols indicate countries in which it causes significant crop losses. Smaller symbols indicate countries in which it occurs mainly on wild hosts, <u>Parasitic Orobanchaceae, Joel & al, 2013</u> World distribution of *Striga gesneriodes*. EPPO global database

Host range: tomato, eggplant,	Host range: same than P. raosa +	Host range: Solanaceae crops	Host range: cowpea, tobacco,
tobacco, pepper, rapeseed, hep,	Brassicas (mustard in India) +	(tomato, eggplant, tobacco)	sweet potatoe, wild hosts
lentli, pea, carrot, celery, lettuce	Cucurbitaceous		
+ wild hosts		Economic importance: it has	Economic importance: it occurs
	Distribution of P. aegyptiaca	become a severe problem in	very locally on tobacco in South
Economic importance: tobacco	overlaps with P. ramosa	India and Pakistan. About	Africa, Ethiopia, Zimbabwe
seriously affected in Europ,		40000ha devoted to tobacco in	
Cuba. 70-80 % biomass loss.	Economic importance: severe	Andra Pradesh state have been	
	damages (not quantified) in	infested.	
	Turley and Israel.		

Broomrapes and Striga parasitic cycles

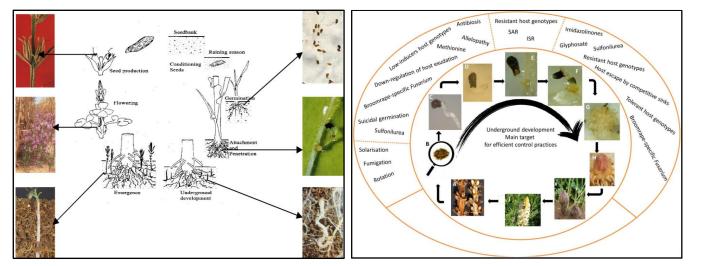


Illustration of broomrapes and Striga life stages

20% of cultivated surface contaminated in France (rapeseed, sunflower, hemp, tobacco)

- broomrape is an obligate parasitic plant
- Striga is an obligate hemi-parasitic plant (partially capable of photosynthetic activity)
- both parasitical crop cycles overlap the host plant cycle
- underground parasitism
- small, long-lasting, and hardly destructible seeds
- → Not controlled by management strategies designed for nonparasitic weeds (i.e., use of agro-chemicals)
- → Points of vulnerability (after germination) are reviewed as inhibition targets of the broomrape-tobacco association

Broomrape, control strategies

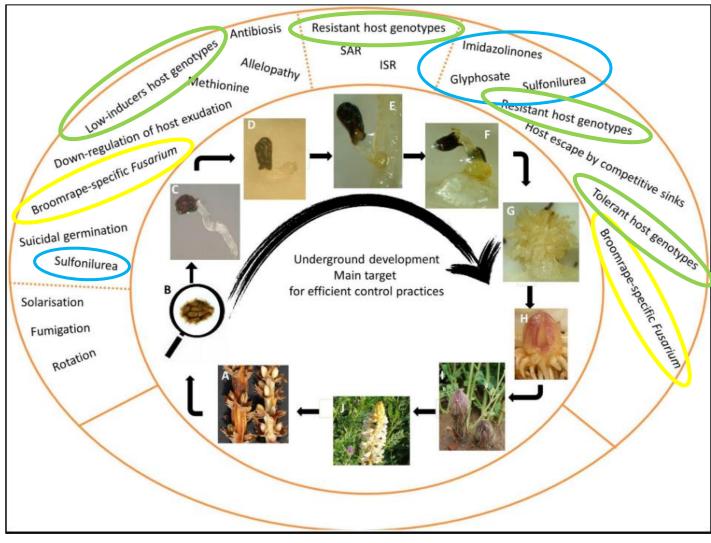


Illustration of broomrape life stages and mechanisms of control. Fernandez-Aparicio et al. 2016

Chemical control of post attached parasites

- in 2015: soil acidification, menthol oil application, imazamox, MH
- 2016: rimsulfuron, sulfosulfuron, Pilot (quizalofop-P-éthyl), Foly R (clethodim)
- 2017: rimsulfuron, sulfosulfuron, methionine, laminarine
- in 2018: rimsulfuron, amidosulfuron, Fresco (metobromuron), Bion, Laminarine
- →No fully satisfactory results obtained (Results available on demand)

Use of intercropping solutions: *Trifolium squarrosum, Lotus corniculatus* →Not easy to integrate to tobacco rotations in France

Breeding for tolerant/resistant varieties to broomrape invasion: 2016-2022

Development of mycoherbicides as biocontrol agents: 2017-2022

Progress in breeding and agronomical approaches for control of tobacco broomrapes

Broomrape, tolerance breeding

P. ramosa on Tobacco, France 2018

La Tour - 24100 Bergerac - France

www.bergeracsb.com

2022_AP30_Malpica.pd

Wika

Broomrape tolerance breeding: *P. ramosa*

- Wika, shows later/lower stimulation of broomrape (*Pelipanche ramosa*) seeds and capacity to grow in presence of broomrape, this tolerance is recessively inherited (Cailleteau et al., CORESTA 2006)
- Breeding lines were developed by conventional breeding from Wika tolerance.
- Development of a molecular marker, on chm 14, by Imperial team, TWC-2018

ITB 31612

Broomrape tolerance breeding: *P. ramosa*

	Fixation count	germination %	conclusion
2021 S control	3,75	5	S
2021 ZZ100 tolerant candidate	0,33	0,6	R
2021 Wika tolerant control	0	0	R
2021 F1 S control x ZZ100	1,3	7,3	S
2021 F1 Wika x ZZ100	2,7	7,7	S

R %

25%

37%

•	ZZ100 tolerance seems
	linked to 1 recessive
	gene as Wika's

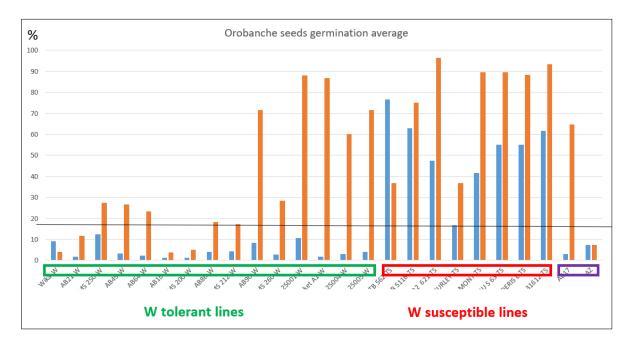
- ZZ100 and Wika tolerance genes are probably different
- → Tests will be repeated for validation in 2023
- → Breeding populations with ZZ100 are launched

2021 test on 190 plants F2 S control x ZZ100

2022 test on 200 plants F2 Wika x ZZ100

s %

75%


63%

conclusion

2 indepedent genes?

1 recessive gene

Broomrape tolerance breeding:

Lines with and without Wika tolerance have been tested in Petri dishes tests with *P. ramosa* inoculum and *O. cernua* inoculum

- Susceptible lines to P. ramosa are also susceptible to O. cernua
- Within group of lines with Wika tolerance all are tolerant to *P. ramosa* but most of these are fully susceptible to *O. cernua*
- 1 new Burley accession from North Europe origin is showing tolerance to *O. cernua*

		Fixation count	germinatio n %	conclusion
2021	S control	10,6	68,33	S
2021	Zerlina, tolerant candidate	0,5	4,3	R
2021	F1 S control x Zerlina	3,5	40,25	S
		R	S	
				-
2021 test, on 145 plants	F2 S control x Zerlina	13%	88%	2 genes? 1
2021 test, on 145 plants	F2 S control x Zerlina			2 genes? 1
2021 test, on 145 plants	F2 S control x Zerlina	Fixation	germinatio	2 genes? 1 conclusion
	F2 S control x Zerlina			
2022	·	Fixation count	germinatio n %	conclusion
2022 2022	S control	Fixation count 7,6	germinatio n % 26,16	conclusion S
2022 2022	S control Zerlina, tolerant candidate	Fixation count 7,6 3,1	germinatio n % 26,16 9,3	conclusion S R
2022 2022	S control Zerlina, tolerant candidate	Fixation count 7,6 3,1	germinatio n % 26,16 9,3	conclusion S R

Zerlina seems tolerant to *O. cernua*, with a lower tolerance level than Wika front to *P. ramose* → Will this tolerance level be enough and useful in contaminated

 \rightarrow Will this tolerance level be enough and useful in contaminated field conditions?

• Zerlina tolerance is recessive and may be controlled by 1 or 2 genes

Striga tolerance breeding

• Test of Wika and ZZ100 tolerant lines behavior under an in vitro test with Striga inoculum:

			ORO FR										
		Plant 1		Plant 2		Plant 3		Plant 4		Plant 5		Plant 6	
N° ordre	var	Nb fixation	% germination										
STRIGA 2	WIKA	0	2	0	3	0	3	0	2	0	2	1	10
STRIGA 3	RUBY (Wika tol variety)	0	1	1	3	1	3	0	2	2	2	0	0
STRIGA 4	ZZ100	7	52	18	60	25	55	1	4	0	11	0	9
STRIGA 5	(susceptible control)	52	85	51	80	42	70	54	95	60	90	22	75

 \rightarrow Future test for Zerlina?

 \rightarrow Future field tests?

2022_AP30_Malpica.pdf

Progress in breeding and agronomical approaches for control of tobacco broomrapes

Agronomical trials 2016-2022: Biological control with mycoherbicide

Stéphanie Gibot Leclerc Christian Steinberg Carole Reibel Lucie Guinchard Nadine Gautheron Veronique Eddel-Hermann

P. ramosa on Tobacco, France 2018

2022_AP30_Malpica.pd

La Tour - 24100 Bergerac - France

www.bergeracsb.com

Biological control with mycoherbicides

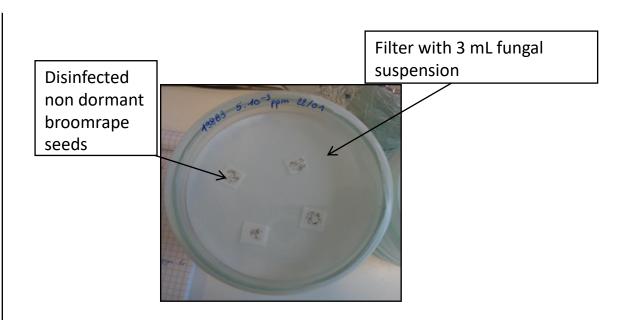
Harvest of broomrape plants with fungus symptoms for creation of a collection of fungal candidates with potential mycoherbicide effect.

A total of 573 samples collected in 2017 and 54 samples collected in 2018

Isolation on acidic malt + antibiotic media of fungal population collected Morphological and taxonomical characterization of isolated population

ightarrow 525 fungal strains isolated

 \rightarrow An important diversity dominated by genus *Fusarium*



2022_AP30_Malpica

Biological control with mycoherbicides

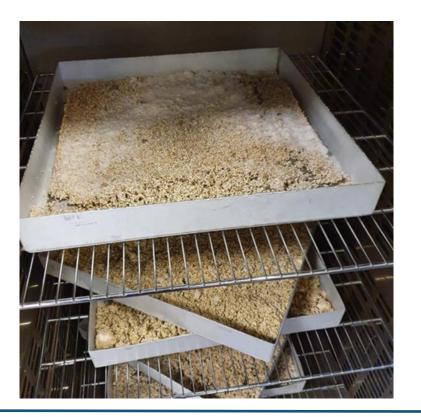
Müller-Stöver method

For each fungal strain: 2 Petri dishes with GR24 and 2 Petri dishes without GR24

Evaluation of germinated broomrape seeds after 3 weeks test \rightarrow Selection of the 20 most efficient strains (> 75 % of germination inhibition)

Koch pathogenicity test

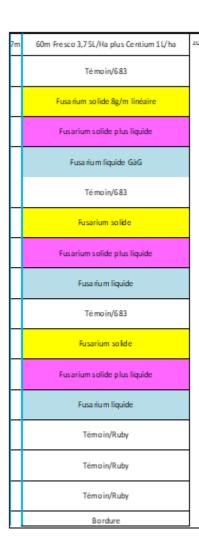
Fo47 (souche témoin non pathogène)



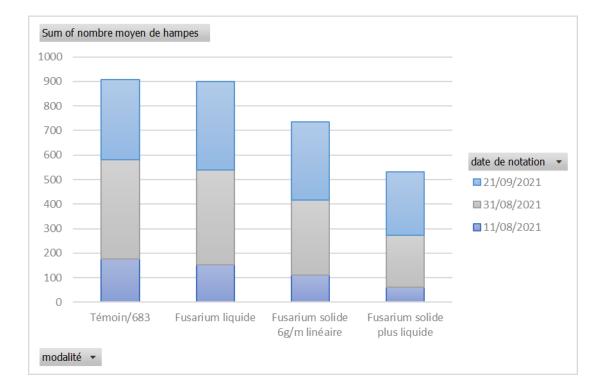
From the lab to the field

Preparation of an inoculum which can be brought to the field

- \rightarrow liquid inoculum cultivated on liquid culture medium
- \rightarrow solid inoculum cultivated on millet



From the lab to the field

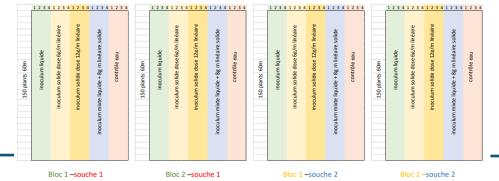

2021 trial design, 1 strain selected

3 modalities:

- solid inoculum
- liquid inoculum
- solid + liquid inoculum

La Tour - 24100 Bergerac - France

www.bergeracsb.com


Conclusion

Parasitical plants represent a challenge for impacted growers as no traditional chemical control strategy appears fully efficient.

 \rightarrow breeding tolerances: active work for introduction within commercial varieties

parasitic plant	Breeding strategy	Breeding status	Next breeding step			
P. ramosa	Introgress high level of	Commercial varieties	Cumulate Wika			
	tolerance in elite lines	available for filler flu-	tolerance and ZZ100			
		cured tobaccos and	tolerance for a potential			
		aromatic burley	increase of stability and			
		tobaccos	intensity of tolerance			
O. cernua	Introgress high level of	Selection of elite lines on	Propose fixed varieties in			
	tolerance in elite lines	going, no commerical	Burley tobacco			
		variety available yet				
Striga	Explore	First screening steps	Validate tolerance			
gesnerioides			interest in local infected			
			areas			

 \rightarrow biocontrol myco-herbicide strategy, a hope for future, trialing intensification in 2022

2022_AP30_Malpica.pdf