Modified QuEChERS Method for the Extraction of Nicotine from Oral Traditional and Innovative Tobacco Products using UPLC-MS/MS

Vanessa Lopez, Fadi Aldeek & John H. Miller

Altria Client Services LLC, Richmond, VA 23219 Center for Research and Technology

2022 CORESTA Congress

October 21, 2022

Introduction

- The tobacco industry continues to embrace tobacco harm reduction
 - As a result, an array of innovative potential reduced-risk products have emerged as alternatives to cigarette smoking
- The wide range of innovative smoke-free products consist of varying matrix types
 - Different and new matrices have led to the development and validation of matrix-specific analytical methods for the quantitation of nicotine content
 - Identified the need for the development of a single analytical method that both extracts and accurately quantitates nicotine in a multitude of differing matrices

Aldeek, F.; Sarkar, M.A. Method Development and Applications for Reduced-Risk Products. Separations 2022, 9, 78.

Gottlieb, S.; Zeller, M. A Nicotine-Focused Framework for Public Health. N. Engl. J. Med. 2017, 377, 1111–1114.

Hatsukami, D.K.; Joseph, A.M.; Lesage, M.; Jensen, J.; Murphy, S.E.; Pentel, P.R.; Kotlyar, M.; Borgida, E.; Le, C.; Hecht, S.S. Developing the science base for reducing tobacco harm. Nicotine Tob. Res. 2007, 9, 537–553.

Zeller, M.; Hatsukami, D. The Strategic Dialogue on Tobacco Harm Reduction: A vision and blueprint for action in the US. Tob. Control 2009, 18, 324–332.

gress2022 - Document not peer-reviewed by CORESTA

Study Overview

- Liquid-Liquid Extraction and UPLC-MS/MS Method
 - Employed a modified QuEChERS* extraction technique using sodium hydroxide and acetonitrile
 - Used NaCl to improve phase separation
 - Leveraged isotopically labeled internal standard (Nicotine-Methyl-d₃) using UPLC-MS/MS
- Used varying commercially-available Moist Smokeless Tobacco (MST), Oral Tobacco-Derived Nicotine (OTDN) products
 - White pouches
 - Pouched MST
 - Loose MST
 - Gums
 - Lozenges

*QuEChERS: Quick, Easy, Cheap, Effective, Rugged & Safe

S. J. Lehotay et al., J. AOAC. Int. 2003, 86, 412.

S. J. Lehotay et al., J. AOAC. Int. 2002, 85, 1177

Product Matrix Range

QuEChERS Extraction Process

Example Image of Final Extracted Samples

Analytical Method

Instrument: Waters
Acquity I-Class UPLC
coupled to Xevo triplequadropole mass
spectrometry

Column: Acquity BEH C18, 2.1 x 50 mm, 2.5 μ m, Waters Corporation

Guard Column:
Acquity BEH C18
VanGuard Pre-column,
2.1 x 5 mm, 1.7 µm,
Waters Corporation

UPLC Parameter	Setting		
Run Time	5.0 min		
Injection Volume	$1 \mu L$		
Autosampler Temperature	10°C		
Column Temperature	45 °C		
Mobile Phase A	10 mM Ammonium Acetate, pH 10		
Mobile Phase B	Acetonitrile		
Pump Program	Gradient Elution		
Flow Rate	0.4 mL/min		
Ionization	Positive ESI		

Compound	Quantitation Trace (m/z)
Nicotine	163.05 > 130.0
Nicotine-Methyl-d ₃	166.05 > 132.0

a a ace

ress2022 - Document not peer-reviewed by CORES

Example Chromatograms for a Calibration Standard and Sample

Nicotine

Nicotine-methyl-d₃

ess2022 - Document not peer-reviewed by CORESTA

Method Optimization and Robustness

- Evaluated several parameters during development to optimize the method and maximize nicotine recovery
 - Sodium hydroxide concentration (OM 3M)
 - Higher recoveries using 2M 3M NaOH
 - Salt type (NaCl, NaSO₄, MgSO₄)
 - Reversing solvent addition

- Performed robustness experiments during method validation
 - Extraction volume was varied: 5, 10, and 20 milliliters
 - Extraction time was varied: 5, 10, and 15 minutes
 - Final extract filtration/dilution was performed at 0-, 2-, and 4-hours post-extraction at room temperature
 - Robustness experiments demonstrated comparable results for all variables

Method Validation

Validation Parameter	Outcome
Calibration (0.50-40 µg/mL)	 R² > 0.997 on all days %Dev < 4%
Accuracy - One fortification level in triplicate for each product type	h 89.7% - 107% recovery
Repeatability (Intra-day precision, n=6)	< 7.0 % RSD
Intermediate Precision (Inter-days precision, n=18)	< 7.2 % RSD
Specificity	No interferences observed at the retention time of nicotine or internal standard
Limit of Quantitation (LOQ)	0.50 μg/mL
Stability – samples in extraction vessels and final filtered samples	Stable for up to seven days when stored in refrigerated conditions (0-4 $^{\circ}$ C)

Note: This table summarizes validation results for all five matrices tested

Jaress 2022 - Document not peer-reviewed by CORFSTA

Accuracy Experiment Results

Matrix	Fortification Level (µg/mL)	Mean % Recovery	% RSD (n=3)
White Pouch	7.53	99.8	0.90
Pouched MST	5.02	89.7	4.05
Loose MST	5.02	106	2.32
Gum	14.8	98.6	3.04
Lozenge	5.02	107	1.35

Note: Fortification levels were chosen with the intent to span the nicotine range for all products

Repeatability and Intermediate Precision

Matrix (Target Nicotine, mg/g)	Day 1, (n=6) Mean, mg/g (%RSD)	Day 2 (n=6) Mean, mg/g (%RSD)	Day 3 (n=6) Mean, mg/g (%RSD)	3-Day (n=18) Mean, mg/g (%RSD)
White Pouch (7.30)	7.60 (1.10)	7.80 (1.04)	6.90 (2.23)	7.40 (5.53)
Pouched MST (8.00)	7.50 (6.95)	7.70 (4.51)	8.60 (4.91)	7.90 (7.18)
Loose MST (11.0)	11.0 (1.31)	9.90 (0.80)	11.0 (1.88)	10.0 (4.57)
Gum (2.40)	2.40 (1.15)	2.50 (1.64)	2.50 (2.10)	2.50 (2.47)
Lozenge (1.00)	1.00 (1.59)	1.00 (1.62)	1.00 (0.80)	1.00 (3.93)

CORESTA Proficiency Study 2020

- ALCS Participated in the 2020 Nicotine and Nicotine Degradants CORESTA Proficiency Study
 - Nineteen labs participated in the nicotine analysis study; using different extraction and/or analytical methods
 - Four e-liquid and five white pouch products submitted for testing
 - Results for the QuEChERS analytical method were submitted as Lab #15
 - QuEChERS' z-scores ranged from -0.84 to 0.31 for pouch and e-liquid products
 - Acceptance criteria: $|z| \le 2$

Our QuEChERS method demonstrated comparable performance for both matrices

Tobacco and Tobacco Products Analytes Sub-Group. "2020 Nicotine and Nicotine Degradants Proficiency Study." Coresta, September 2020, www.coresta.org/sites/default/files/technical_documents/main/TTPA-246-1-CTR_2020-ProfStudy-Nicotine-and-Nicotine-Degradants_Sept2020

Conclusion

- We developed a single extraction procedure and analytical method that can quantitate nicotine for a wide range of tobacco matrices
 - Reduced extraction and analysis time
 - Easy to implement and maintain
 - Has a potential for standardization
- For all five matrices evaluated:
 - Accuracy results were within 89.7% 107% Recovery
 - Repeatability (n=6) over three days, < 7.0 % RSD
 - Intermediate precision (n=18), < 7.2 %RSD
- The method was validated internally, following International Council on Harmonization (ICH) guidelines

Thank
You!

Questions?

