

A comparative study on delivery of nicotine, humectants and endogenous aroma constituents from reconstituted tobacco materials in granule and sheet form under heat-not-burn condition

Liu Shengyi¹, Zhu Libing¹, Dou Jinxi¹, Liu Weijuan²

 Ruvian Technology Ltd., Kunming, China
 Yunnan Reascend Tobacco Technology (Group) Co., Ltd, Kunming, China wed by CORESTA

Background

A great variety of heat-not-burn products (HnBs) available in market;

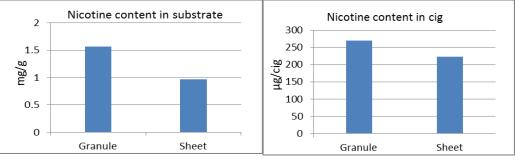
- Heating devices are various and the tobacco materials in heating rods come in different forms too;
- Central heating, peripheral heating, resistance heating, electromagnetic heating;
- Tobacco substrate in sheet or granule form;

The delivery pattern of core compounds (nicotine, humectants and endogenous volatile aroma constituents) of tobacco substration forms;

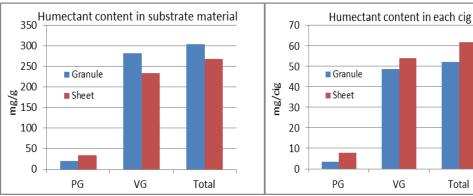
Objectives:

To quantitatively determine the delivery of the nicotine and endogenous volatile aroma constituents from tobacco substrate in sheet and granule forms;

To study the puff-by-puff performance of tobacco substrate in sheet and granule forms.


Methods:

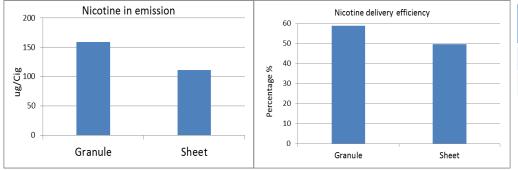
- Two different forms of reconstituted tobacco materials (A: granule and B: sheet) were prepared using same tobacco leaves blend;
- Same formula was designed to ensure a similar content of humectants and tobaccos;
- Nicotine, humectants and aroma constituents in prepared material were quantitatively determined;
- Tobacco rods filled with either reconstituted tobacco materials form A or B were heated by the same device with central heating blade, and emissions were generated by linear smoking machine;
- Smoking regime: HCI (55mL, 2s duration, 28s interval), 8 puffs taken from each tobacco stick;
- Nicotine, humectants and aroma constituents in emissions were collected by Cambridge Filter Pad and quantitatively determined;
- Puff-by-puff analysis was carried out to study delivery of the compounds of interests on puff basis.



Results-Contents in substrate material

Nicotine content

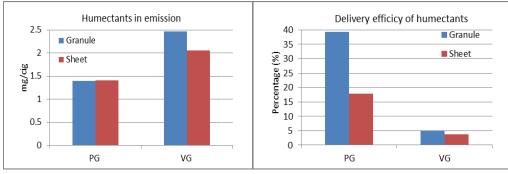
Humectant content


Substrate form	Nicotine content in material (mg/g)	Nicotine content in each cig (μg/cig)
Granule	1.57	270.04
Sheet	0.97	223.10

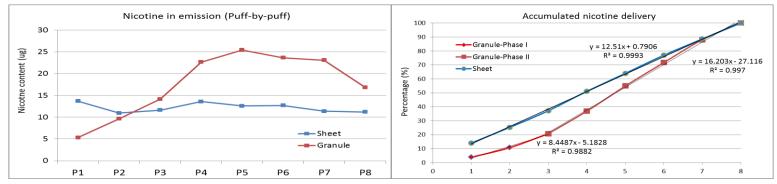
Nicotine and humectants in two substrate materials were determined and their contents in each cig were calculated;
 Similar contents were determined.

Substrate form	PG content in material (mg/g)	VG content in material (mg/g)	Total (mg/g)
Granule	20.70	283.30	304.0
Sheet	34.20	234.50	
Substrate form	PG content in cig (mg/g)	VG content in each cig (mg/g)	Total perminent (mg/cig) automatic
Granule	3.56	48.73	52.29 to the transmission of transmission of transmission of the transmission of transmisa
Sheet	7.86	53.94	
			2022

Results- Emission analysis

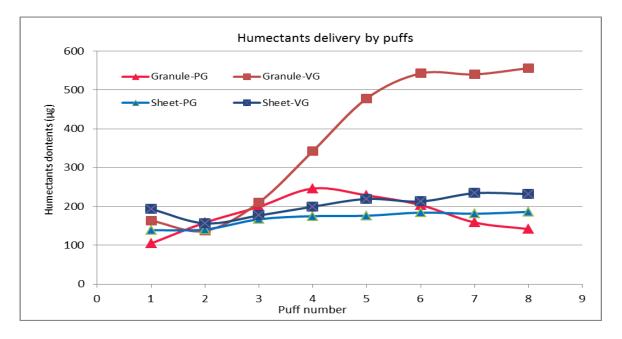

Nicotine in emission

_	Substrate form	Nicotine in emission (µg/cig)	Delivery efficiency (%)
_	Granule	159.0	58.9
-	Sheet	111.0	49.8


Nicotine delivery efficiency of tobacco granules is higher than that of tobacco sheet.

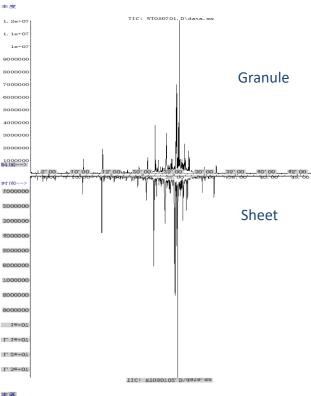
Humectants in emission

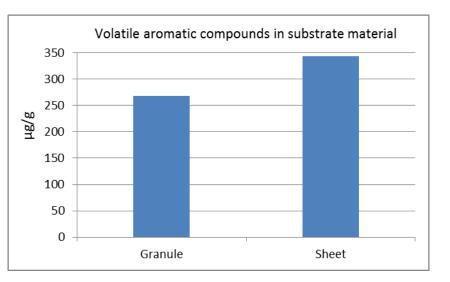
Substrate form	PG in emission (mg/cig)	VG in emission (mg/cig)	PG Delivery efficiency (%)	VG Delivery efficiency (%)
Granule	1.40	2.47	39.23	5.07 5.07
Sheet	1.41	2.05	17.94	3.81
Humectants delivery efficiency of tobacco granules is higher than that of tobacco sheet				


Results- Puff-by-puff Analysis Nicotine delivery

Nicotine content	Puff 1 (µg)	Puff 2 (μg)	Puff 3 (µg)	Puff 4 (μg)	Puff 5 (µg)	Puff 6 (µg)	Puff 7 (μg)	Puff 8 (µg)
Granule	5.35	9.65	14.15	22.65	25.45	23.65	23.10	16.85
Sheet	13.70	10.95	11.65	13.60	12.60	12.70	11.40	11.20
Accumulated nicotine	Puff 1 (%)	Puff 2 (%)	Puff 3 (%)	Puff 4 (%)	Puff 5 (%)	Puff 6 (%)	Puff 7 (%)	Puff 8 (%)
Granule	3.80	10.65	20.70	36.78	54.85	71.63	88.04	100
Sheet	14.00	25.20	37.12	51.02	63.91	76.89	88.55	100

D Tobacco substrate in sheet form shows a much more stable nicotine delivery;

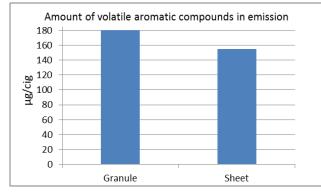

Results- Puff-by-puff Analysis Humectants delivery

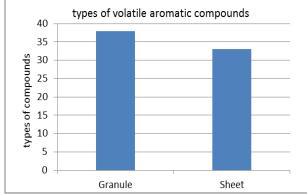


Both PG and VG show a more stable delivery pattern from substrate material in sheet form;
 VG in substrate material in granule form was delivered in an inconsistent manner.

Results- Volatile aromatic compounds

Material analysis

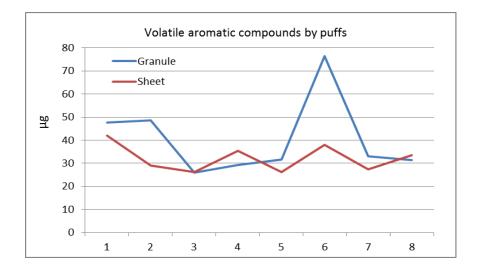



- 63 types of endogenous volatile aromatic compounds were defined;
- Higher level of volatile aromatic compounds were determined in substrate in sheet form.

Results- Volatile aromatic compounds in emission

Total amount in emission

Total types in emission


Substrate form	Total volatile aromatic compounds in emission (μg/cig)	
Granule	180.42	
Sheet	155.16	

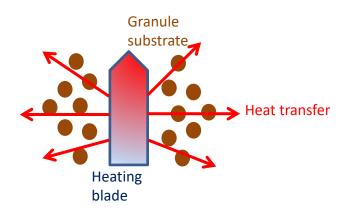
Substrate form	Total types of volatile aromatic compounds in emission	
Granule	37	
Sheet	32	

- Substrate in granule released higher amount of endogenous volatile aromatic compounds;
- More types of endogenous volatile aromatic compounds were found in emission of granule from of substrate material.

Results- Volatile aromatic compounds in emission

Puff-by-puff analysis

Substrate in sheet form showed a relatively more stable delivery of endogenous volatile aromatic compounds through puffs


Summary of results

	Granule	Sheet
Nicotine delivery	\checkmark	
	Tobacco substrate in granule form showed	higher delivery efficiency of nicotine
Humectants delivery	\checkmark	
	Tobacco substrate in granule form showed h	igher delivery efficiency of humectants
Volatile aromatic compound	\checkmark	
delivery	Tobacco substrate in granule form delivery hig compounds. More types of compounds	-
Puff-by-puff/nicotine	Tobacco substrate in sheet form shows a	much more stable nicotine delivery
		\checkmark
Puff-by-puff/humectants	Tobacco substrate in sheet form shows a mu	ch more stable delivery of humectants
		√
Puff-by-puff/volatile aromatic compounds	Substrate in sheet form showed a relatively mo aromatic compound	
•		\checkmark

Discussions

- Substrate in granule form arranged in random order might facilitate the thermal transmission, thus enhance the delivery of constituents release from tobacco material;
- Sheet material assembled in order might lead to a directional, ordered heat transfer that helped a more stable delivery of constituents.

Conclusions

- Forms of tobacco substrate significantly affect the delivery of crucial constituents;
- Under central heating condition, tobacco substrate material in granule form showed high delivery efficiency of nicotine, humectants and endogenous volatile aromatic compounds; compounds are delivered in a more stable manner in sheet form;
- This study provides some clues for the future optimization of HnB product;
- Further studies can be done on the effect of heating style.

云南拓宝科技有限公司

THANKS