Partial Vapor Pressure, Activity, Activity Coefficient and Henry's Law Vaporization Constant at 25 °C of Nicotine from Binary Mixtures with Glycerin and with Propylene Glycol #### Kelley St. Charles ¹, Serban Moldoveanu ² - 1) St. Charles Consultancy, Lewisville, NC - 2) R.J. Reynolds Tobacco Company, Winston-Salem, NC ## Introduction - E-liquids composed primarily of humectants - Glycerin and/or Propylene glycol (PG) typically > weight 90% - Nicotine typically (0 to 5) weight % - No quantitative information on nicotine vapor behavior with these humectants in the literature - Objective: Measure equilibrium headspace concentration of nicotine for binary mixtures with glycerin and PG near 25 °C - Concentration converted to partial pressure using Ideal Gas Law - Activity = partial pressure / undiluted vapor pressure - Activity coefficient = activity / solution mole fraction ## Introduction - Henry's law vaporization constant (H_V^{px}) = initial slope of partial pressure (p) vs mole fraction (x): $H_V^{px} = \lim_{x \to 0} \frac{p}{x}$ - Initial data points of partial pressure vs mole fraction fit to quadratic equation to allow multiple points to be used - $p = bx + cx^2$ with constant set to zero to avoid offset of slope - And the constant was not statistically significant as well (p-value > 0.8) - Slope (dp/dx) = b + 2cx, @ x = 0 gives Initial Slope = b - Slight temperature correction to 25 °C using Clausius-Clapeyron equation - $-p_2/p_1$ = exp[(-Δ_I^gH/R) * (1/ T_2 1/ T_1)] where: p = pressure (Pa), Δ_I^gH = enthalpy of vaporization (J/mol at 298.15 K), R = gas constant = 8.31446 J/(K mol), T = Temperature (K) - $-\Delta_{l}^{g}H = 65.0 \pm 0.83$ kJ/mol from mean of 8 values from the literature # Experimental ## Sample preparation - Binary mixtures stored in aluminum-foil lined flexible bags filled with N₂^a - Headspace sampled through PTFE lined septum using non-coring needles^a - Sampled using (6 mm diameter x 70 mm long) sorbent sampling tubes containing 120 mg of XAD-4 resin (SKC Inc., Eighty Four, PA) - Measured volumes sampled using peristaltic pump with output bubbled into calibrated (200 to 1000) mL volumetric flasks or GASTIGHT® syringes - In-syringe sampling used to check undiluted nicotine headspace sampling a - Experiments conducted sequentially - First experiment : Nicotine in binary mixture with Glycerin - Samples in a room with stable temperature control (23.1 to 24.7 °C) - 12 mixtures, (0.0015 to 1.0) mole fraction nicotine - Second experiment : Nicotine in binary mixture with PG - Samples in environmental chamber (24.8 to 25.1 °C) - 8 mixtures, (0.0050 to 1.0) mole fraction nicotine ^a St.Charles & Moldoveanu, Beitr. Tabakforsch. Int. 27 (2016) 11-19 ## Sample preparation #### XAD-4 sorbent tube holder Silicone adhesive applied to silicone stopper ## Sample preparation - XAD-4 resin and glass plugs transferred to 4 mL vial - 3 mL Extraction Solution + 60 μL Internal Standard (I.S.) added & shaken for 25 minutes - Extraction solution = ethyl acetate + 5000 ppm triethylamine (to prevent nicotine adsorption to glass) - I.S.= 10.9 µg/mL (+/-) deuterated nicotine (methyl-d3) in extraction solution - Aliquot of extract pipetted to 1.5 mL GC vials for analysis - In-syringe sampling used a 10 mL GASTIGHT® syringe with conical point needle and shutoff valve - 1.5 mL extraction solution added to syringe - Headspace aspirated through solution until desired volume - Valve closed and syringe shaken manually for 5 minutes - Extract transferred to 1.5 mL GC vials for analysis ## GC/MS/MS Analysis of Nicotine - Agilent 7890B/7810B system in multiple reaction monitoring (MRM) mode - DB-Waxetr 30 m x 0.25 mm i.d. column with a 0.25 μm film - Nicotine concentration vs (peak area nicotine / peak area I.S.) calibration - Signal/noise, S/N = 632 for 3.0 ng nicotine/mL (glycerin experiment) and S/N = 2391 for 24.7 ng nicotine/mL (PG experiment) #### Conditions for the GC/MS/MS analysis of nicotine. | Parameter | Description | Parameter | Description | |--------------------------|---------------|---------------------------|-------------| | Initial oven temperature | 50°C | Aux. temperature | 250°C | | Initial time | 1.0 min | Solvent delay | 3.75 min | | Oven ramp rate | 10°C/min | Gain factor | 10 | | Oven temperature 1 | 240°C | Electron energy | 45 V | | Final time | 10 min | MS source temperature | 230°C | | Total run time | 30.0 min | Acquisition mode | MRM | | Inlet temperature | 280°C | d3-Nicotine precursor ion | 165.1 | | Inlet mode | Splitless | d3 Nicotine product ion | 87.1 | | Purge time | 1.0 min | MS1 resolution | Unit | | Purge flow to split vent | 15.0 mL/min | Dwell time | 120 ms | | Carrier gas | Helium | CE | 11 V | | Injection volume | 1.0 μL | Nicotine precursor ion | 162.1 | | Flow mode | Constant flow | Nicotine product ion | 84.1 | | Flow rate | 1.0 mL/min | MS1 resolution | Unit | | Nominal initial pressure | 7.65 psi | Dwell time | 120 ms | | GC outlet | MS/MS | CE | 11 V | # Results ## **Nicotine in Glycerin** (0.02 mole fraction = 3.5 weight %) Mean Nicotine data ± Expanded Uncertainty^{a,b} for Nicotine (1) + Glycerin (2) at 25 °C No of Mascuraments N. Mala Fraction v. Partial Proceure & Activity & Activity Coaff, 7 | N | <i>X</i> ₁ | $ar{ ho}_{\scriptscriptstyle 1}$ /Pa | $ar{a}_1$ | $r_{_1}$ | |----|------------------------|--------------------------------------|-----------------------------------|----------------------------------| | 3 | 0.0015 ± 0.00010 | 0.069 ± 0.019 | 0.0168 ± 0.0062 | 11.2 ± 4.4 | | 4 | 0.00499 ± 0.000081 | 0.223 ± 0.039 | 0.054 ± 0.013 | 10.8 ± 2.7 | | 4 | 0.00927 ± 0.000077 | 0.432 ± 0.034 | 0.104 ± 0.020 | 11.2 ± 2.2 | | 5 | 0.0121 ± 0.00023 | 0.584 ± 0.025 | 0.141 ± 0.023 | 11.6 ± 1.9 | | 6 | 0.02002 ± 0.000073 | 0.87 ± 0.15 | $\boldsymbol{0.210 \pm 0.048}$ | 10.5 ± 2.4 | | 5 | 0.0235 ± 0.00043 | 0.986 ± 0.051 | $\boldsymbol{0.238 \pm 0.039}$ | $\textbf{10.1} \pm \textbf{1.7}$ | | 6 | 0.0501 ± 0.00010 | 1.58 ± 0.36 | $\textbf{0.38} \pm \textbf{0.10}$ | 7.6 ± 2.0 | | 5 | 0.093 ± 0.0017 | 2.253 ± 0.097 | 0.544 ± 0.088 | 5.83 ± 0.96 | | 6 | 0.2533 ± 0.00089 | 2.96 ± 0.49 | $\textbf{0.71} \pm \textbf{0.16}$ | 2.82 ± 0.62 | | 6 | 0.461 ± 0.0091 | 3.60 ± 0.36 | $\textbf{0.87} \pm \textbf{0.15}$ | 1.89 ± 0.33 | | 6 | 0.741 ± 0.0032 | 4.35 ± 0.56 | 1.05 ± 0.20 | 1.42 ± 0.27 | | 14 | 0.998 ± 0.0016 | 4.14 ± 0.50 | $\boldsymbol{1.00 \pm 0.17}$ | 1.00 ± 0.17 | ^a k=2 for x, ^b 95.45% confidence interval for N-1 degrees of freedom from Student's t distribution for others ## **Nicotine in PG** (0.02 mole fraction = 4.2 weight %) #### Mean Nicotine data ± Expanded Uncertainty^{a,b} for Nicotine (1) + PG (2) at 25 °C #### No. of Measurements N, Mole Fraction x, Partial Pressure \bar{p} , Activity \bar{a} , Activity Coeff. \bar{r} | N | <i>x</i> ₁ | $ar{p}_{\scriptscriptstyle 1}$ /Pa | $ar{a}_1$ | r_1 | |----|------------------------|------------------------------------|-------------------------------------|-----------------| | 4 | 0.00506 ± 0.000019 | 0.0275 ± 0.0043 | 0.00744 ± 0.00086 | 1.49 ± 0.18 | | 5 | 0.02015 ± 0.000075 | 0.1106 ± 0.0079 | 0.0298 ± 0.0030 | 1.49 ± 0.15 | | 5 | 0.0504 ± 0.00019 | 0.261 ± 0.032 | 0.0704 ± 0.0074 | 1.41 ± 0.15 | | 6 | 0.0999 ± 0.00034 | 0.448 ± 0.042 | 0.121 ± 0.012 | 1.21 ± 0.12 | | 6 | 0.2486 ± 0.00091 | 1.164 ± 0.059 | $\textbf{0.314} \pm \textbf{0.034}$ | 1.25 ± 0.14 | | 5 | 0.498 ± 0.0020 | $\textbf{1.91} \pm \textbf{0.40}$ | $\textbf{0.51} \pm \textbf{0.21}$ | 1.03 ± 0.43 | | 5 | 0.747 ± 0.0028 | 2.87 ± 0.25 | 0.77 ± 0.21 | 1.03 ± 0.28 | | 10 | 0.999 ± 0.0038 | 3.714 ± 0.081 | $\textbf{1.00} \pm \textbf{0.11}$ | 1.00 ± 0.11 | ^a k=2 for x, ^b 95.45% confidence interval for N-1 degrees of freedom from Student's t distribution for others #### Nicotine activity coefficient below 0.02 mole fraction Glycerin ~ 11 (implies partial pressure 11 times greater than Ideal Solution) PG ~ 1.5 (implies partial pressure 1.5 times greater than Ideal Solution) ## Nicotine Activity vs Mole Fraction Nicotine - Both mixtures show positive deviation from Ideal Solution - Nicotine in Glycerin deviation much greater than in Nicotine in PG - Nicotine in PG approaches Ideal Solution ## Henry's Law Volatility Constant (H_V^{px}) - Initial slope of nicotine partial pressure vs mole fraction - Nicotine in Glycerin ~ 10x greater than Nicotine in PG ### Polynomial regression for H_V^{px} | Experiment | Glycerin | Propylene Glycol | |--------------------------------|----------|------------------| | No. of Points | 7 | 6 | | Degrees of Freedom | 5 | 4 | | R Squared | 0.9998 | 0.9994 | | H_V^{px} /Pa (coefficient b) | 51.38 | 5.26 | | $u(H_V^{px})/Pa$ | 0.69 | 0.19 | | $U(H_V^{px})/Pa$ | 1.8 | 0.52 | u = standard uncertaintyU = expanded uncertainty ## **Putting it all together** - Glycerin with hydroxyl units on all carbons exhibits much stronger bonding with other glycerin molecules than with less polar nicotine molecules - Nicotine in Glycerin similar to Nicotine in Water - Activity coefficient in Glycerin ~ 11 below 0.02 mole fraction - Activity coefficient in Water = 13 for 0.016 mole fraction^a - Nicotine in PG, with 2 hydroxyl units & 1 fully protonated carbon, approaches an Ideal Solution - Strong narcissism of glycerin evident in vapor pressure - Glycerin vapor pressure @ 25 °C ~ 0.022 Pa (0.13% of PG VP) - Vapor pressure @ 25 °C : PG ~ 17 Pa, Nicotine ~ 4 Pa ^a Banyasz, J.L. The physical chemistry of nicotine. In Gorrod J.W.; Jacob III P., Eds. *Analytical Determination of Nicotine and Related Compounds and their Metabolites*; Elsevier, New York, 1999; pp 149-190. ## **Putting it all together** ## Conclusions ## Summary - Nicotine partial pressures in binary mixtures with glycerin and with propylene glycol were measured over a wide range of nicotine concentration - Nicotine activity, activity coefficient and Henry's law volatility constant were calculated - Nicotine partial pressure and activity vs mole fraction for both systems exhibited a positive deviation from an Ideal Solution - The deviation for glycerin mixtures was much greater than that for propylene glycol mixtures ## Summary - Henry's Law vaporization constant for nicotine in glycerin was about an order of magnitude greater that that for nicotine in propylene glycol. - Glycerin, with hydroxyl units on all carbons, exhibits much stronger bonding with other glycerin molecules than with less polar nicotine in a manner similar to nicotine in water. - Nicotine in propylene glycol approached Ideal Solution behavior ## Thanks to - R.J. Reynolds Tobacco Company Research and Development - You for listening **Questions?**