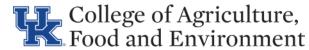


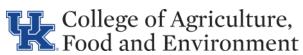
Field Monitoring And Management Practices Associated With Angular Leaf Spot Of Dark Tobacco

A. Keeney-Webb, A. Bailey, and C. Rodgers
University of Kentucky, Research and Education Center
Princeton, KY
Paper 15


cument not peer-reviewed by CORESTA

Angular Leaf Spot Background

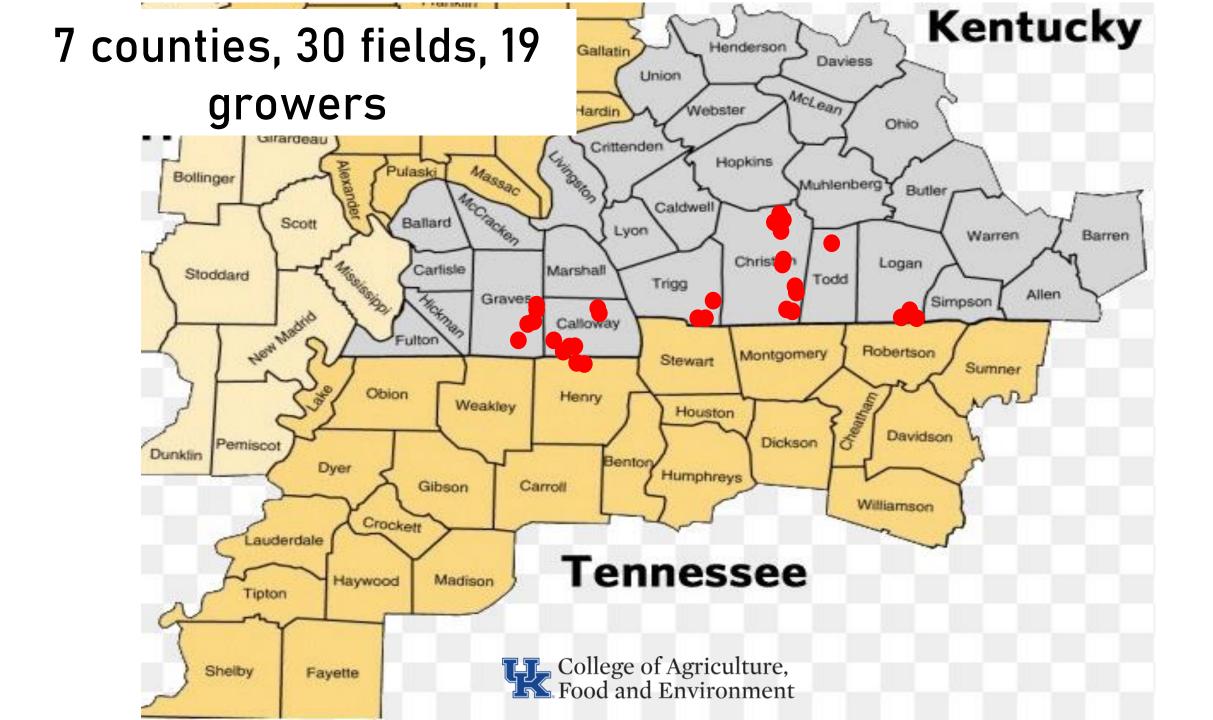
- Pseudomonas syringae pv. tabaci is the casual agent of ALS, a bacterial disease
- Most significant foliar disease in dark tobacco since 2015 in Kentucky and Tennessee
 - Streptomycin has been the standard control
 - Documented resistance to Streptomycin
 - PDDL 2015-2021 Data: 28 out of 113 samples with resistance to Streptomycin



Angular Leaf Spot Research

- Field spray trials have been ongoing since 2015, at the University of Kentucky Research and Education Center in Princeton, Kentucky and Murray State University in Murray, Kentucky
- >25 chemicals have been tested for control of angular leaf spot
- Monitoring resistance to Streptomycin
- Dark tobacco variety trial, to test sensitivity of varieties to angular leaf spot
- Conventional vs. no-till system trial

Observational Study Survey



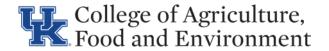
College of Agriculture, Food and Environment Integrated Plant and Soil Science

Grower Name:					
County where field is located:					
Acers in field:					
History of Angular Leaf Spot in this field: Yes No					
If yes, year <u>documented:</u>					
Field location (for researcher use):					
Pre plant chemical control:					
Pre plant chemical application date:					
Pre plant fertility:					
Pre_plant_fertility_application_date:					
Nitrogen applied all up front: Yes No					
Previous crop rotation:					
If previously in tobacco, how many years:					
If field previously in tobacco (within last three years) has there been documentation of other diseases present: Yes No					
If yes, what specific disease was identified:					
Previous tillage:					
Variety of Tobacco:					
Transplants grown on farm: Yes No					
If no, where did you receive transplants from					
Transplant date:					
Transplant water tank mix:					
see blue.					

University of Kentucky Research and Education Center | Princeton, KY 42445 | P: 270-365-7541 | www.uky.edu

Observational Study Variables of Interest

- Soil Temperature
- Air Temperature
- Rainfall
- Soil Type
- Soil Nutrients
- Tissue Nutrients
- Variety
- General location of plots (ponds, tree line, low lying area in field, etc.)


- Fertilizer Application
- Weed Pressure
- Disease Pressure (other than ALS)
- Insect Pressure
- Tillage
- Pesticide Application
- Transplant tank mix
- History of ALS
- Greenhouse Management

Observational Study Layout

- 3 plots per field (2 rows, 40 ft. long), representative of the entire field
- Plot B

 soil/air temperature sensor and rain gauge

Observational Study Layout

- 3 field visits during growing season
 - 1st visit: layout plots (GPS coordinates), transplant and soil samples, and placed sensors
 - 2nd visit: tissue sample (1st fully expanded leaf), disease ratings (10 plants/plot), weed pressure, insect pressure/damage, if ALS was found a rain gauge was placed
 - 3rd visit: green weights (5 plants/plot), disease rating, weed pressure, and insect pressure/damage, tissue sample with ALS symptoms

College of Agriculture, Food and Environment

Observational Study Screening

- Collected lesions from individual leaves
- Confirmed collected lesions were *Pseudomonas syringae* pv. *tabaci*
- Screened isolates for resistance to Streptomycin (200 ppm)

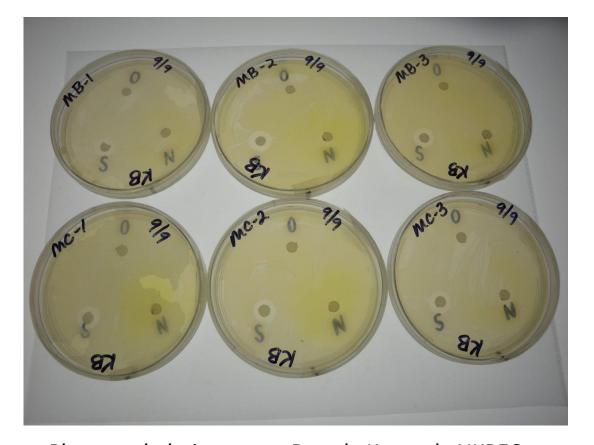
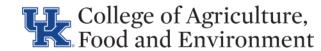
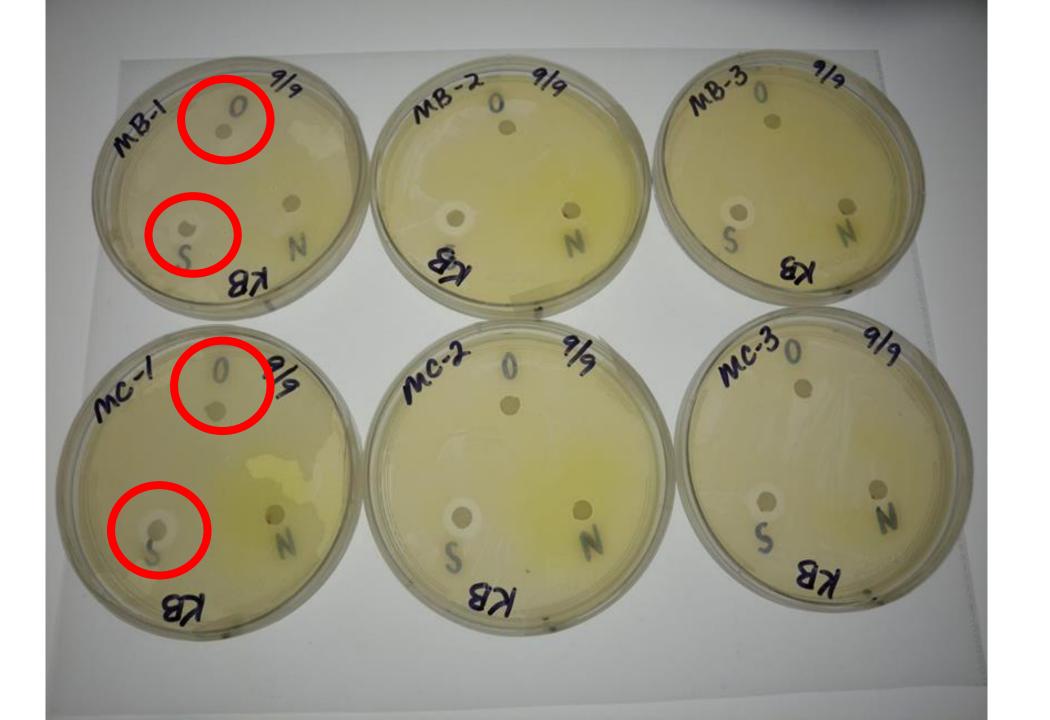




Photo and plating assay: Brenda Kennedy UKREC

2020-2021 Observational Study Summary

2020:

- 4 out of 30 fields with ALS
- 1 of 4 fields had Streptomycin resistance at the field rate (200 ppm), 3 separate isolates

2021:

- 8 out of 30 fields with ALS
- 3 of 8 fields had Streptomycin resistance at the field rate (200 ppm), not all isolates per field were resistant like 2020

Best Management Plan

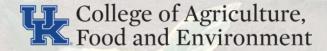
- Streptomycin can still help in fields with susceptible ALS
- For streptomycin resistant ALS:
 - Copper products have been best alternative:
 - Nordox: copper oxide, 3 to 5 lbs/A
 - Copper sulfate products: Phyton 27AG, KOP-5, Instill, 15 to 20 oz/A
 - Cueva: copper octanoate, 1 to 2 gal/A
 - Surface sterilants:
 - Oxidate (hydrogen peroxide + peroxyacetic acid) 8 to 26 oz/50 gal
 - PAA (peroxyacetic acid + hydrogen peroxide) 32 oz/A
- Alternate sprays with streptomycin, copper, and oxidate/PAA may be best spray plan.

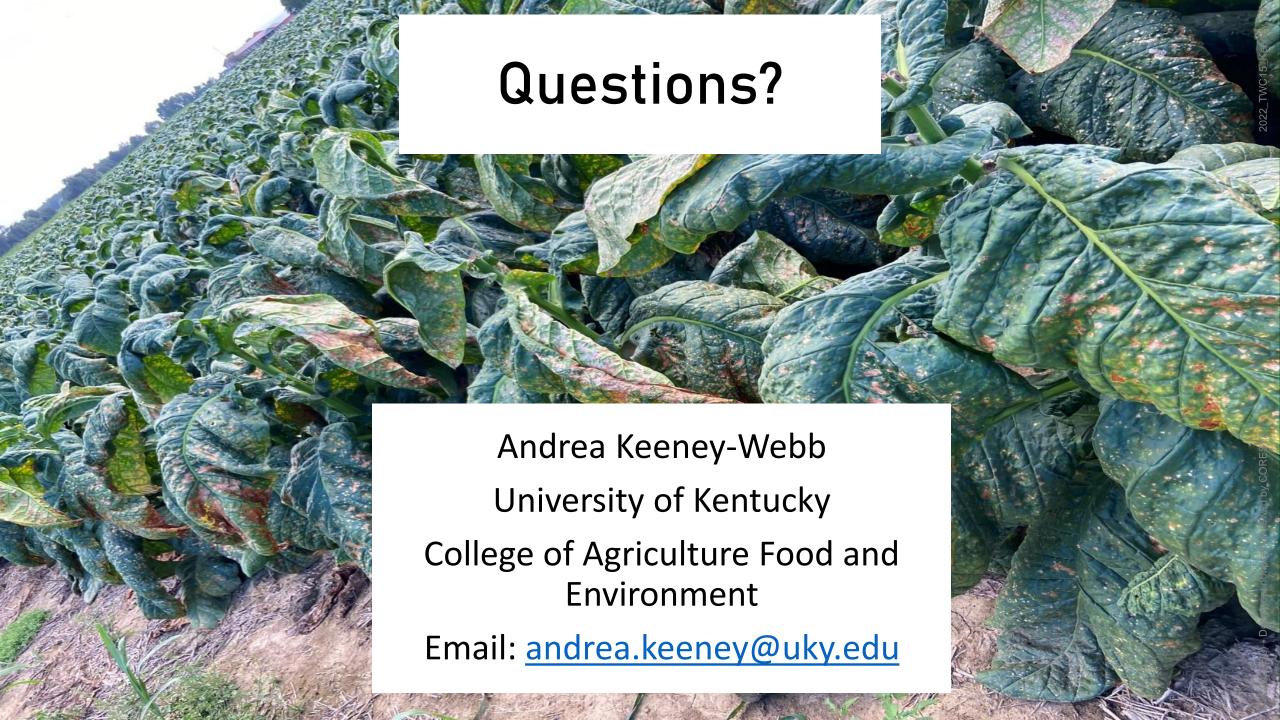
Questions we have and how we are answering them in 2021:

- Does ALS start in transplants/greenhouse?
 - We do not think so, no ALS has been seen in greenhouses. ALS is normally seen approximately 6 weeks after transplant.
 - Currently, taking transplant samples from fields to screen for *P. syringae pv. tabaci*
- Does tillage matter?
 - Possibly, the bacteria is said to over winter on plant residue (no-till systems could be worse)
 - A trial investigating ALS pressure in no-till systems and in conventional systems. Also, an objective in my monitoring project.

2021 Angular Leaf Spot Tillage Trial

Untreated	Conventional	No-Till	Conventional	No-Till
control	#1	#1	#2	#2


Based on field observations and trials there are no clear differences in tillage systems


- Trial size: 1 ac, each block 75 ft. width by 100 ft. length
- 20, 6" soil cores/block
- Analyze for casual agent of ALS to determine if there is a difference in a notill vs. conventional system College of Agriculture,

Acknowledgments

- T. J. Faenza (Logan, KY)
- Johnny Dawson (Logan, KY)
- Josh Monroe (Todd, KY)
- Mark Luttrell (Christian/Todd, KY)
- Wesley Bollinger (Christian, KY)
- Kent Boyd (Christian, KY)
- Dale Seay (Christian, KY)
- Bruce Cline (Christian, KY)
- Todd Harton (Trigg, KY)
- Adrian Peacher (Trigg, KY)

- Joe Dan Taylor (Calloway, KY)
- Daniel Harper (Calloway, KY)
- Tim Lax (Calloway, KY)
- Murdock Farms (Calloway, KY)
- Gary Brame (Calloway/Graves, KY)
- Chase Walker (Graves, KY)
- Ronnie Miller (Graves, KY)
- Workman Farms (Calloway/Henry, KY/TN)
- Don Jones (Henry, TN)
- ALL COUNTY AGENTS
- Altria for funding

